1
|
Holcomb DA, Knee J, Adriano Z, Capone D, Cumming O, Kowalsky E, Nalá R, Viegas E, Stewart JR, Brown J. Associations between fecal contamination of the household environment and enteric pathogen detection in children living in Maputo, Mozambique. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.11.25323794. [PMID: 40162287 PMCID: PMC11952620 DOI: 10.1101/2025.03.11.25323794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Environmental exposure to enteric pathogens is generally assessed using fecal indicators but relationships between markers of fecal contamination and actual exposure to enteric pathogens remain poorly characterized. We investigated whether Escherichia coli and two human fecal markers (HF183 and Mnif) in urban Mozambican household soil and drinking water were associated with detection in child stool of eight bacteria, three viruses, and three protozoa measured by multiplex reverse-transcription PCR and soil transmitted helminths assessed by microscopy. We used mixed-effects logistic regression with marginal standardization to obtain a pooled estimate of the overall indicator-pathogen relationship while simultaneously estimating pathogen-specific associations that accounted for assessing multiple pathogens per sample. At least one pathogen was detected in 88% (169/192) of child stools. Increasing drinking water E. coli gene concentration was associated with higher Ascaris prevalence, while human HF183 in drinking water was weakly associated with lower prevalence of the most common pathogens but was infrequently detected. No fecal marker in soil was clearly associated with any pathogen. We did not find evidence to support human markers as reliable indicators of enteric pathogen carriage in a high-prevalence domestic setting and recommend targeting enteric pathogens directly.
Collapse
Affiliation(s)
- David A. Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Jackie Knee
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | - Drew Capone
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana 47405, United States of America
| | - Oliver Cumming
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Erin Kowalsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Rassul Nalá
- Division of Parasitology, Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Edna Viegas
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Jill R. Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Baruch Institute for Marine and Coastal Sciences, School of the Earth, Ocean and Environment, University of South Carolina, Georgetown, South Carolina 29442, United States of America
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| |
Collapse
|
2
|
Dias BDC, Lamarca AP, Machado DT, Kloh VP, de Carvalho FM, Vasconcelos ATR. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome 2025; 7:20. [PMID: 40033444 PMCID: PMC11874851 DOI: 10.1186/s42523-025-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Dynamic interspecific interactions and environmental factors deeply impact the composition of microbiotic communities in the gut. These factors intertwined with the host's genetic background and social habits cooperate synergistically as a hidden force modulating the host's physiological and health determinants, with certain bacterial species being maintained from generation to generation. Firmicutes, one of the dominant bacterial phyla present across vertebrate classes, exhibits a wide range of functional capabilities and colonization strategies. While ecological scenarios involving microbial specialization and metabolic functions have been hypothesized, the specific mechanisms that sustain the persistence of its microbial taxa in a high diversity of hosts remain elusive. This study fills this gap by investigating the Firmicutes metabolic mechanisms contributing to their prevalence and heritability in the host gut on metagenomes-assembled bacterial genomes collected from 351 vertebrate samples, covering 18 food-producing animals and humans, specific breeds and closely-related species. We observed that taxa belonging to Acetivibrionaceae, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, and the not well understood CAG-74 family were evolutionarily shared across all hosts. These prevalent taxa exhibit metabolic pathways significantly correlated with extra-host survival mechanisms, cell adhesion, colonization and host transmission, highlighted by sporulation, glycan biosynthesis, bile acid metabolism, and short-chain fatty acid encoded genes. Our findings provide a deeper understanding of the ecological foundations governing distinct transmission modes, effective colonization establishment, and maintenance of Firmicutes, offering new perspectives on both well-known and poorly characterized species.
Collapse
Affiliation(s)
- Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática e Evolução Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Vinicius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | |
Collapse
|
3
|
Ito Y, Nagasawa M, Koyama K, Ito K, Kikusui T. Comparative analysis based on shared amplicon sequence variants reveals that cohabitation influences gut microbiota sharing between humans and dogs. Front Vet Sci 2024; 11:1417461. [PMID: 39434718 PMCID: PMC11491291 DOI: 10.3389/fvets.2024.1417461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The One Health concept is a comprehensive understanding of the interaction between humans, animals, and the environment. The cohabitation of humans and pets positively affects their physical, mental, and social well-being. It is recognized as an essential factor from the One Health perspective. Furthermore, a healthy balance in the gut microbiome is essential for good health, and the changes in the gut microbiome associated with cohabitation between humans and pets could potentially affect various aspects of the health of both hosts. Therefore, elucidating the sharing of gut bacteria between humans and pets associated with cohabitation is important for understanding One Health. However, most studies have examined sharing at the taxonomic level, and it remains unclear whether the same bacteria are transferred between humans and pets, and whether they mutually influence each other. Methods Here, microbiome analysis and shared 16S rRNA gene amplicon sequence variant (ASV) analysis were conducted before the start of cohabitation between humans and dogs, as well as at 2 weeks, 1 month, and 3 months after cohabitation. Results 16S rRNA gene ASVs analysis indicated that gut microbes have been transferred between humans and dogs. The overall structure of the gut microbiota within human-dog pairs remained unchanged after 3 months of adaptation. However, 11ASVs were shared within human-dog pairs. Many shared ASVs were highly abundant within each host, and this high abundance may be considered a factor that influences bacterial transfer between hosts. Discussion Our results provide important insights into the potential for the transfer of gut bacteria between humans and dogs. These findings are considered crucial for understanding the impact of human-dog cohabitation on various aspects of health.
Collapse
Affiliation(s)
| | - Miho Nagasawa
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| | - Kahori Koyama
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| | | | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| |
Collapse
|
4
|
Schmartz GP, Rehner J, Schuff MJ, Molano LAG, Becker SL, Krawczyk M, Tagirdzhanov A, Gurevich A, Francke R, Müller R, Keller V, Keller A. Exploring microbial diversity and biosynthetic potential in zoo and wildlife animal microbiomes. Nat Commun 2024; 15:8263. [PMID: 39327429 PMCID: PMC11427580 DOI: 10.1038/s41467-024-52669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Understanding human, animal, and environmental microbiota is essential for advancing global health and combating antimicrobial resistance (AMR). We investigate the oral and gut microbiota of 48 animal species in captivity, comparing them to those of wildlife animals. Specifically, we characterize the microbiota composition, metabolic pathways, AMR genes, and biosynthetic gene clusters (BGCs) encoding the production of specialized metabolites. Our results reveal a high diversity of microbiota, with 585 novel species-level genome bins (SGBs) and 484 complete BGCs identified. Functional gene analysis of microbiomes shows diet-dependent variations. Furthermore, by comparing our findings to wildlife-derived microbiomes, we observe the impact of captivity on the animal microbiome, including examples of converging microbiome compositions. Importantly, our study identifies AMR genes against commonly used veterinary antibiotics, as well as resistance to vancomycin, a critical antibiotic in human medicine. These findings underscore the importance of the 'One Health' approach and the potential for zoonotic transmission of pathogenic bacteria and AMR. Overall, our study contributes to a better understanding of the complexity of the animal microbiome and highlights its BGC diversity relevant to the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | - Miriam J Schuff
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | | | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, 66421 Saarland University, Homburg, Germany
| | - Azat Tagirdzhanov
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Alexey Gurevich
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
- Department of Computer Science, Saarland University, 66123, Saarbrücken, Germany
| | | | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Verena Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.
| |
Collapse
|
5
|
Víquez-R L, Henrich M, Riegel V, Bader M, Wilhelm K, Heurich M, Sommer S. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. Anim Microbiome 2024; 6:28. [PMID: 38745212 PMCID: PMC11094858 DOI: 10.1186/s42523-024-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays a crucial role in the health and well-being of animals. It is especially critical for ruminants that depend on this bacterial community for digesting their food. In this study, we investigated the effects of management conditions and supplemental feeding on the gut bacterial microbiota of red deer (Cervus elaphus) in the Bavarian Forest National Park, Germany. Fecal samples were collected from free-ranging deer, deer within winter enclosures, and deer in permanent enclosures. The samples were analyzed by high-throughput sequencing of the 16 S rRNA gene. The results showed that the gut bacterial microbiota differed in diversity, abundance, and heterogeneity within and between the various management groups. Free-ranging deer exhibited lower alpha diversity compared with deer in enclosures, probably because of the food supplementation available to the animals within the enclosures. Free-living individuals also showed the highest beta diversity, indicating greater variability in foraging grounds and plant species selection. Moreover, free-ranging deer had the lowest abundance of potentially pathogenic bacterial taxa, suggesting a healthier gut microbiome. Winter-gated deer, which spent some time in enclosures, exhibited intermediate characteristics between free-ranging and all-year-gated deer. These findings suggest that the winter enclosure management strategy, including supplementary feeding with processed plants and crops, has a significant impact on the gut microbiome composition of red deer. Overall, this study provides important insights into the effects of management conditions, particularly winter enclosure practices, on the gut microbiome of red deer. Understanding these effects is crucial for assessing the potential health implications of management strategies and highlights the value of microbiota investigations as health marker.
Collapse
Affiliation(s)
- Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
- Department of Biology, Bucknell University, Lewisburg, PA, USA.
| | - Maik Henrich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Vanessa Riegel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marvin Bader
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
- Albert-Ludwigs University, Freiburg, Baden-Württemberg, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, NO-34, Norway
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
6
|
Mahmud B, Vargas RC, Sukhum KV, Patel S, Liao J, Hall LR, Kesaraju A, Le T, Kitchner T, Kronholm E, Koshalek K, Bendixsen CG, VanWormer JJ, Shukla SK, Dantas G. Longitudinal dynamics of farmer and livestock nasal and faecal microbiomes and resistomes. Nat Microbiol 2024; 9:1007-1020. [PMID: 38570675 PMCID: PMC11966613 DOI: 10.1038/s41564-024-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Globally, half a billion people are employed in animal agriculture and are directly exposed to the associated microorganisms. However, the extent to which such exposures affect resident human microbiomes is unclear. Here we conducted a longitudinal profiling of the nasal and faecal microbiomes of 66 dairy farmers and 166 dairy cows over a year-long period. We compare farmer microbiomes to those of 60 age-, sex- and ZIP code-matched people with no occupational exposures to farm animals (non-farmers). We show that farming is associated with microbiomes containing livestock-associated microbes; this is most apparent in the nasal bacterial community, with farmers harbouring a richer and more diverse nasal community than non-farmers. Similarly, in the gut microbial communities, we identify more shared microbial lineages between cows and farmers from the same farms. Additionally, we find that shared microbes are associated with antibiotic resistance genes. Overall, our study demonstrates the interconnectedness of human and animal microbiomes.
Collapse
Affiliation(s)
- Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lindsey R Hall
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Akhil Kesaraju
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Thao Le
- Integrated Research Development Laboratory, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Terrie Kitchner
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Erik Kronholm
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Kyle Koshalek
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Casper G Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Jeffrey J VanWormer
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA.
- Computational Informatics in Biology and Medicine program, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Tomasulo A, Simionati B, Facchin S. Microbiome One Health model for a healthy ecosystem. SCIENCE IN ONE HEALTH 2024; 3:100065. [PMID: 39077385 PMCID: PMC11262273 DOI: 10.1016/j.soh.2024.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/24/2024] [Indexed: 07/31/2024]
Abstract
The attention on microbiome research and its translation to application deployment is escalating along with diffused hype. There is real excitement in this new science, leveraging the growing potential of advances in molecular biology and sequencing techniques. Yet, despite the substantial efforts provided by the scientific communities, the true significance of research achievements requires coordinated and constructive actions across interdisciplinary fields. Individual researchers, universities, small and large companies, venture capitalists, and governments play a fundamental role in fostering collaboration and promoting knowledge that will benefit each other and sustain global prosperity. Making meaningful connections across different fields and getting a new perspective on how technological developments interrelate are the main drivers for creativity and progress. To help the broader innovation community focus on potentially new cross-sectorial developments, the One Health-microbiome-centric approach, defined here as "Microbiome One Health " , is considered as the efficient, holistic approach to product and service exploitations meant to preserve human well-being within a healthy ecosystem. The model opposes the biomedical system and generalizes the "One World-One Health ™" concept. The focus will be given to Nutrition as a driver of health and the food system for its commercial exploitation microbiome-centric, specifically at the interface of human/animal/agricultural. Remarkably, at the interface of humans/animals, the interaction with pets, specifically dogs, has been recognized as a driving force of novel microbiome exploitation.
Collapse
Affiliation(s)
| | | | - Sonia Facchin
- University of Padova, Department of Surgery, Oncology and Gastroenterology DISCOG, Padova, Italy
| |
Collapse
|