1
|
Diotallevi A, Amatori S, Persico G, Buffi G, Sordini E, Giorgio M, Fanelli M, Galluzzi L. Histone H3 K4 trimethylation occurs mainly at the origins of polycistronic transcription in the genome of Leishmania infantum promastigotes and intracellular amastigotes. BMC Genomics 2025; 26:167. [PMID: 39979847 PMCID: PMC11841261 DOI: 10.1186/s12864-025-11350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Trypanosomatids include the genera Trypanosoma and Leishmania, which are the etiological agents of important human diseases. These pathogens present unique mechanisms of gene expression characterized by functionally unrelated genes positioned in tandem and organized into polycistronic transcription units transcribed in a large pre-mRNA by RNA Polymerase II. Since most of the genome is constitutively transcribed, gene expression is primarily controlled by post-transcriptional processes. As in other organisms, histones in trypanosomatids contain a considerable number of post-translational modifications, highly conserved across evolution, such as the acetylation and methylation of some lysines on histone H3 and H4. These modifications have been mainly studied in Trypanosoma spp. The aim of this work was to elucidate the distribution of histone H3 lysine 4 trimethylation (H3K4me3) over the chromatin landscape of Leishmania infantum, the causative agent of canine and human leishmaniasis in the Mediterranean region. To this end, we investigated by chromatin immunoprecipitation (ChIP)-sequencing either the promastigotes (the flagellated motile form) and the amastigotes (the intracellular form) in an in vitro infection model. RESULTS The chromatin was prepared from THP-1 cells non infected, THP-1 cells infected with L. infantum MHOM/FR/78/LEM75, and THP-1 cells non infected and mixed with L. infantum MHOM/FR/78/LEM75 promastigotes. ChIP was conducted using anti-H3K4me3 or anti-H3K27me3 antibodies and ChIP-seq was performed on an Ion S5 sequencer. We showed that histone H3K4me3 is mainly enriched at transcription start sites (67%) or internally within the polycistronic transcription units (30%), with no differences between L. infantum promastigotes and amastigotes. Moreover, the enriched regions co-localize with another hallmark of transcriptional activation (histone H3 acetylation) in L. major, a species characterized by a high degree of synteny with L. infantum. CONCLUSIONS These findings expand our knowledge of the epigenomics of Leishmania parasites, focusing on epigenetic markers associated with transcription in L. infantum, and will contribute to elucidate the transcriptional mechanisms in these pathogens.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Enrica Sordini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d'Augusto 2, Fano (PU), 61029, Italy.
| |
Collapse
|
2
|
Grünebast J, Lorenzen S, Clos J. Genome-wide quantification of polycistronic transcription in Leishmania major. mBio 2025; 16:e0224124. [PMID: 39584812 PMCID: PMC11708010 DOI: 10.1128/mbio.02241-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Leishmania major is a human-pathogenic, obligate parasite and the etiological agent of the most prevalent, cutaneous form of leishmaniasis, which is an important neglected, tropical disease with ~1.2 million new infections per year. Leishmania, and the whole order Trypanosomatida, are early eukaryotes with highly diverged gene expression and regulation pathways, setting them apart from their mammalian hosts and from most other eukaryotes. Using precision run-on sequence analysis, we performed a genome-wide mapping and density analysis of RNA polymerases in isolated nuclei of the protozoan parasite Leishmania major. We map transcription initiation sites at divergent strand switch regions and head-tail regions within the chromosomes and correlate them with known sites of chromatin modifications. We confirm continuous, polycistronic RNA synthesis in all RNA polymerase II-dependent gene arrays but find small varying RNA polymerase activities in polycistronic transcription units (PTUs), excluding gene-specific transcription regulation, but not PTU-specific variations. Lastly, we find evidence for transcriptional pausing of all three RNA polymerase classes, hinting at a possible mechanism of transcriptional regulation.IMPORTANCELeishmania spp. are pathogens of humans and animals and cause one of the most important neglected tropical diseases. Regulation of gene expression in Leishmania but also in the related Trypanosoma is radically different from all eukaryotic model organisms, dispensing with regulated, gene-specific transcription, and relying instead on highly regulated translation. Our work sheds light on the initiation, elongation, and termination of transcription, maps unidirectional, polycistronic transcription units, provides evidence for transcriptional pausing at or near starting points of RNA synthesis, and quantifies the varying transcription rates of the polycistronic transcription units. Our results will further the understanding of these important pathogens and should provide a valuable resource for researchers in the field of eukaryotic microbiology.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Infection Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
4
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
5
|
Jara M, Barrett M, Maes I, Regnault C, Imamura H, Domagalska MA, Dujardin JC. Transcriptional Shift and Metabolic Adaptations during Leishmania Quiescence Using Stationary Phase and Drug Pressure as Models. Microorganisms 2022; 10:97. [PMID: 35056546 PMCID: PMC8781126 DOI: 10.3390/microorganisms10010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Microorganisms can adopt a quiescent physiological condition which acts as a survival strategy under unfavorable conditions. Quiescent cells are characterized by slow or non-proliferation and a deep downregulation of processes related to biosynthesis. Although quiescence has been described mostly in bacteria, this survival skill is widespread, including in eukaryotic microorganisms. In Leishmania, a digenetic parasitic protozoan that causes a major infectious disease, quiescence has been demonstrated, but the molecular and metabolic features enabling its maintenance are unknown. Here, we quantified the transcriptome and metabolome of Leishmania promastigotes and amastigotes where quiescence was induced in vitro either, through drug pressure or by stationary phase. Quiescent cells have a global and coordinated reduction in overall transcription, with levels dropping to as low as 0.4% of those in proliferating cells. However, a subset of transcripts did not follow this trend and were relatively upregulated in quiescent populations, including those encoding membrane components, such as amastins and GP63, or processes like autophagy. The metabolome followed a similar trend of overall downregulation albeit to a lesser magnitude than the transcriptome. It is noteworthy that among the commonly upregulated metabolites were those involved in carbon sources as an alternative to glucose. This first integrated two omics layers afford novel insight into cell regulation and show commonly modulated features across stimuli and stages.
Collapse
Affiliation(s)
- Marlene Jara
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Michael Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (M.B.); (C.R.)
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ilse Maes
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Clement Regnault
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (M.B.); (C.R.)
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hideo Imamura
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium;
| | - Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|