1
|
Achterberg T, de Jong A. ProPr54 web server: predicting σ 54 promoters and regulon with a hybrid convolutional and recurrent deep neural network. NAR Genom Bioinform 2025; 7:lqae188. [PMID: 39781509 PMCID: PMC11704786 DOI: 10.1093/nargab/lqae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
σ54 serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ54 is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ54 promoters and regulon in bacterial genomes. Here, we report a σ54 promoter prediction method ProPr54, based on a convolutional neural network trained on a set of 446 validated σ54 binding sites derived from 33 bacterial species. Model performance was tested and compared with respect to bacterial intergenic regions, demonstrating robust applicability. ProPr54 exhibits high performance when tested on various bacterial species, highly surpassing other available σ54 regulon identification methods. Furthermore, analysis on bacterial genomes, which have no experimentally validated σ54 binding sites, demonstrates the generalization of the model. ProPr54 is the first reliable in silico method for predicting σ54 binding sites, making it a valuable tool to support experimental studies on σ54. In conclusion, ProPr54 offers a reliable, broadly applicable tool for predicting σ54 promoters and regulon genes in bacterial genome sequences. A web server is freely accessible at http://propr54.molgenrug.nl.
Collapse
Affiliation(s)
- Tristan Achterberg
- Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Luo B, Wu S, Liu W, Zhang D, Liu R, Liu T, Sun Z, Wei Z, Liu M, Shi Z, Huang N, Teng Y. Mechanistic insights into the orthogonal functionality of an AHL-mediated quorum-sensing circuit in Yersinia pseudotuberculosis. Synth Syst Biotechnol 2024; 10:174-184. [PMID: 39552757 PMCID: PMC11564790 DOI: 10.1016/j.synbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
YpsR, a pivotal regulatory protein in the quorum-sensing (QS) of Yersinia pseudotuberculosis(Y. pstb), is essential for molecular signaling, yet its molecular mechanisms remain poorly understood. Herein, this study systematically investigates the interactions between YpsR and acyl-homoserine lactones (AHLs), shedding light on the selective mechanism of YpsR to various AHL molecules. Using molecular docking and surface plasmon resonance (SPR) analysis, we confirmed YpsR's binding affinities, with the strongest observed for 3OC6-HSL, which notably inhibited Y. pstb growth. Additionally, we engineered a whole-cell biosensor based on YpsR-AHL interaction, which exhibited sensitivity to the signal molecule 3OC6-HSL produced by Y. pstb. Furthermore, key YpsR residues (S32, Y50, W54, D67) involved in AHL binding were identified and validated. Overall, this research elucidates the mechanisms of QS signal recognition in Y. pstb, providing valuable insights that support the development of diagnostic tools for detecting Y. pstb infections.
Collapse
Affiliation(s)
- Boyu Luo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shanshan Wu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Wei Liu
- Laboratory Department in Second Medical Center of PLA General Hospital, Beijing, 100089, China
| | - Dongdong Zhang
- Western Medical Branch of PLA General Hospital, Beijing, 100041, China
| | - Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhi Sun
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ziqun Wei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Mingyu Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Niu Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
3
|
Thakur P, Gopalakrishnan V, Saxena P, Subramaniam M, Goh KM, Peyton B, Fields M, Sani RK. Influence of Copper on Oleidesulfovibrio alaskensis G20 Biofilm Formation. Microorganisms 2024; 12:1747. [PMID: 39338422 PMCID: PMC11434458 DOI: 10.3390/microorganisms12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented with high copper ion concentrations of 5, 15, and 30 µM, exhibited inhibited growth in its planktonic state. Conversely, under similar copper concentrations, OA G20 demonstrated enhanced biofilm formation on glass coupons. Microscopic studies revealed that biofilms exposed to copper stress demonstrated a change in cellular morphology and more accumulation of carbohydrates and proteins than controls. Consistent with these findings, sulfur (dsrA, dsrB, sat, aprA) and electron transport (NiFeSe, NiFe, ldh, cyt3) genes, polysaccharide synthesis (poI), and genes involved in stress response (sodB) were significantly upregulated in copper-induced biofilms, while genes (ftsZ, ftsA, ftsQ) related to cellular division were negatively regulated compared to controls. These results indicate that the presence of copper ions triggers alterations in cellular morphology and gene expression levels in OA G20, impacting cell attachment and EPS production. This adaptation, characterized by increased biofilm formation, represents a crucial strategy employed by OA G20 to resist metal ion stress.
Collapse
Affiliation(s)
- Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Brent Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Matthew Fields
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
4
|
Pospíšil J, Schwarz M, Ziková A, Vítovská D, Hradilová M, Kolář M, Křenková A, Hubálek M, Krásný L, Vohradský J. σ E of Streptomyces coelicolor can function both as a direct activator or repressor of transcription. Commun Biol 2024; 7:46. [PMID: 38184746 PMCID: PMC10771440 DOI: 10.1038/s42003-023-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alice Ziková
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Yang HW, Lee JH, Zhao Y. RpoN Regulon in Erwinia amylovora Revealed by Transcriptional Profiling and In Silico Binding Site Analysis. PHYTOPATHOLOGY 2023; 113:183-193. [PMID: 35994732 DOI: 10.1094/phyto-07-22-0255-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Erwinia amylovora causes a devastating fire blight disease in apples and pears. One of the main virulence determinants in E. amylovora is the hypersensitive response (HR) and pathogenicity (hrp)-type III secretion system (T3SS), which is activated by the RpoN-HrpL sigma factor cascade. However, the RpoN regulon in E. amylovora has not been investigated. In this study, we determined the RpoN regulon in E. amylovora by combining RNA-seq transcriptomic analysis with in silico binding site analysis. RNA-seq revealed that 262 genes, approximately 7.5% genes in the genome of E. amylovora, were differentially transcribed in the rpoN mutant as compared with the wild type. Specifically, genes associated with virulence, motility, nitrogen assimilation, the PspF system, stress response, and arginine biosynthesis are positively regulated by RpoN, whereas genes associated with biosynthesis of amino acids and sorbitol transport are negatively regulated by RpoN. In silico binding site analysis identified 46 potential target genes with a putative RpoN binding site, and the upstream sequences of six, three, and three genes also contain putative GlnG, PspF, and YfhA binding sites, respectively. Overall, RpoN directly regulates genes associated with virulence, nitrogen assimilation, the PspF system, motility and the YfhA/YfhK two-component regulatory system.
Collapse
Affiliation(s)
- Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Jae-Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
- Department of Plant Pathology, WSU-IAREC, Prosser, WA 99350, U.S.A
| |
Collapse
|
6
|
Gu D, Zhang Y, Wang K, Li M, Jiao X. Characterization of the RpoN regulon reveals the regulation of motility, T6SS2 and metabolism in Vibrio parahaemolyticus. Front Microbiol 2022; 13:1025960. [PMID: 36620062 PMCID: PMC9817140 DOI: 10.3389/fmicb.2022.1025960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen that can colonize the small intestine of the host and cause diarrhea. The alternative sigma factor RpoN plays a vital role in regulating motility, carbon utilization and affects host colonization in V. parahaemolyticus RIMD2210633. In this study, transcriptome and phenotypic analysis further expanded our understanding of the RpoN regulon in V. parahaemolyticus. A deletion mutant of rpoN (ΔrpoN) was subjected to RNA-seq for systemic identification of the RpoN-controlled genes. Compared with the wild-type (WT), 399 genes were differentially expressed in the ΔrpoN strain. Moreover, 264 genes were down-regulated in the ΔrpoN strain, including those associated with nitrogen utilization (VP0118), glutamine synthetase (VP0121), formate dehydrogenase (VP1511 and VP1513-VP1515), quorum sensing (opaR and luxZ), polar flagellar systems, and type VI secretion system 2 (T6SS2). Quantitative real-time reverse transcription PCR (qRT-PCR) and electrophoretic mobility shift assay (EMSA) further confirmed that RpoN could directly bind to the promoters of these genes associated with polar flagellar systems (flgB and fliE), lateral flagellar systems (flgB2 and lafA), T6SS2 (hcp2 and VPA1044) and glutamine synthetase (VP0121), and then positively regulate the expression of these systems. A RpoN-binding motif was identified in V. parahaemolyticus using the MEME suite and verified by the EMSA. Besides, the deletion of rpoN caused a significant decrease in hemolytic activity, adhesion, and cytotoxicity. Our results provide new cues to better understand the regulatory networks of RpoN protein to motility, T6SS2, and metabolism in V. parahaemolyticus.
Collapse
Affiliation(s)
- Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Youkun Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Kangru Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mingzhu Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China,*Correspondence: Xinan Jiao,
| |
Collapse
|
7
|
Yan J, Guo X, Li J, Li Y, Sun H, Li A, Cao B. RpoN is required for the motility and contributes to the killing ability of Plesiomonas shigelloides. BMC Microbiol 2022; 22:299. [PMID: 36510135 PMCID: PMC9743648 DOI: 10.1186/s12866-022-02722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND RpoN, also known as σ54, first reported in Escherichia coli, is a subunit of RNA polymerase that strictly controls the expression of different genes by identifying specific promoter elements. RpoN has an important regulatory function in carbon and nitrogen metabolism and participates in the regulation of flagellar synthesis, bacterial motility and virulence. However, little is known about the effect of RpoN in Plesiomonas shigelloides. RESULTS To identify pathways controlled by RpoN, RNA sequencing (RNA-Seq) of the WT and the rpoN deletion strain was carried out for comparison. The RNA-seq results showed that RpoN regulates ~ 13.2% of the P. shigelloides transcriptome, involves amino acid transport and metabolism, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, ribosome biosynthesis, flagellar assembly and bacterial secretion system. Furthermore, we verified the results of RNA-seq using quantitative real-time reverse transcription PCR, which indicated that the absence of rpoN caused downregulation of more than half of the polar and lateral flagella genes in P. shigelloides, and the ΔrpoN mutant was also non-motile and lacked flagella. In the present study, the ability of the ΔrpoN mutant to kill E. coli MG1655 was reduced by 54.6% compared with that of the WT, which was consistent with results in RNA-seq, which showed that the type II secretion system (T2SS-2) genes and the type VI secretion system (T6SS) genes were repressed. By contrast, the expression of type III secretion system genes was largely unchanged in the ΔrpoN mutant transcriptome and the ability of the ΔrpoN mutant to infect Caco-2 cells was also not significantly different compared with the WT. CONCLUSIONS We showed that RpoN is required for the motility and contributes to the killing ability of P. shigelloides and positively regulates the T6SS and T2SS-2 genes.
Collapse
Affiliation(s)
- Junxiang Yan
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Xueqian Guo
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Jinghao Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Yuehua Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Hongmin Sun
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Ang Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353 China
| | - Boyang Cao
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| |
Collapse
|
8
|
Liu Y, Gao J, Wang N, Li X, Fang N, Zhuang X. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155403. [PMID: 35469877 DOI: 10.1016/j.scitotenv.2022.155403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Quorum sensing (QS) regulates various physiological processes in a cell density-dependent mode via cell-cell communication. Stenotrophomonas rhizophila DSM14405T having the diffusible signal factor (DSF)-QS system, is a plant growth-promoting rhizobacteria (PGPR) that enables host plants to tolerate saline-alkaline stress. However, the regulatory mechanism of DSF-QS in S. rhizophila is not fully understood. In this study, we used S. rhizophila DSM14405T wild-type (WT) and an incompetent DSF production rpfF-knockout mutant to explore the regulatory role of QS in S. rhizophila growth, stress responses, biofilm formation, and colonization under saline-alkaline stress. We found that a lack of DSF-QS reduces the tolerance of S. rhizosphere ΔrpfF to saline-alkaline stress, with a nearly 25-fold reduction in the ΔrpfF population compared with WT at 24 h under stress. Transcriptome analysis revealed that QS helps S. rhizophila WT respond to saline-alkaline stress by enhancing metabolism associated with the cell wall and membrane, oxidative stress response, cell adhesion, secretion systems, efflux pumps, and TonB systems. These metabolic systems enhance penetration defense, Na+ efflux, iron uptake, and reactive oxygen species scavenging. Additionally, the absence of DSF-QS causes overexpression of biofilm-associated genes under the regulation of sigma 54 and other transcriptional regulators. However, greater biofilm formation capacity confers no advantage on S. rhizosphere ΔrpfF in rhizosphere colonization. Altogether, our results show the importance of QS in PGPR growth and colonization; QS gives PGPR a collective adaptive advantage in harsh natural environments.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Gao
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Fang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of International Rivers and Eco-security, Yunan University, Kunming 650500, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|