1
|
Xia Y, Deng M, Zhang T, Yu J, Lin X. An efficient fungi-biochar-based system for advancing sustainable management of combined pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125649. [PMID: 39761713 DOI: 10.1016/j.envpol.2025.125649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains. Herein, we developed a Trichoderma reesei-Laccase (LAC)-Biochar coupling system (TLBS), based on the structural and electrostatic analyses of LAC's metal-chelated active site (T1 Cu), for the sustainable remediation of combined pollutants, including HMs. In the TLBS, genetically engineered T. reesei produces a mutated LAC with enhanced binding capability for HMs (Ni and Cd). The TLBS enables high-efficiency remediation through three steps. First, lignin-derived biochar serves as both a supportive carrier and an inducer, initiating LAC expression. Second, natural mediators are released due to the interaction between biochar and T. reesei, and LAC is activated by environmental HMs and natural mediators. Finally, TLBS achieved significant reductions in the available concentrations of Ni (93.63%) and Cd (89.68%) and efficiently remediated multiple organic pollutants (71.41-96.79%), including antibiotics and pesticides. Furthermore, the synergistic interaction among TLBS components ensures long-term remediation effects in environments rich in agricultural biomass, making it ideal for eco-friendly farming practices. This in situ amendment strategy, utilizing only green, biodegradable lignocellulosic wastes and environmentally friendly fungi, offers new pathways for the sustainable management of combined contamination and the improvement of human health.
Collapse
Affiliation(s)
- Ying Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Minghui Deng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Tao Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Junjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xinda Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Masuda Y, Mise K, Xu Z, Zhang Z, Shiratori Y, Senoo K, Itoh H. Global soil metagenomics reveals distribution and predominance of Deltaproteobacteria in nitrogen-fixing microbiome. MICROBIOME 2024; 12:95. [PMID: 38790049 PMCID: PMC11127431 DOI: 10.1186/s40168-024-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Biological nitrogen fixation is a fundamental process sustaining all life on earth. While distribution and diversity of N2-fixing soil microbes have been investigated by numerous PCR amplicon sequencing of nitrogenase genes, their comprehensive understanding has been hindered by lack of de facto standard protocols for amplicon surveys and possible PCR biases. Here, by fully leveraging the planetary collections of soil shotgun metagenomes along with recently expanded culture collections, we evaluated the global distribution and diversity of terrestrial diazotrophic microbiome. RESULTS After the extensive analysis of 1,451 soil metagenomic samples, we revealed that the Anaeromyxobacteraceae and Geobacteraceae within Deltaproteobacteria are ubiquitous groups of diazotrophic microbiome in the soils with different geographic origins and land usage types, with particular predominance in anaerobic soils (paddy soils and sediments). CONCLUSION Our results indicate that Deltaproteobacteria is a core bacterial taxon in the potential soil nitrogen fixation population, especially in anaerobic environments, which encourages a careful consideration on deltaproteobacterial diazotrophs in understanding terrestrial nitrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kazumori Mise
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhengcheng Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata, 940-0826, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
3
|
Sun FS, Wang MM, Zhao XY, Huang QY, Liu CQ, Yu GH. Synergistic binding mechanisms of co-contaminants in soil profiles: Influence of iron-bearing minerals and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123353. [PMID: 38219894 DOI: 10.1016/j.envpol.2024.123353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
In contaminated soil sites, the coexistence of inorganic and organic contaminants poses a significant threat to both the surrounding ecosystem and public health. However, the migration characteristics of these co-contaminants within the soil and their interactions with key components, including Fe-bearing minerals, organic matter, and microorganisms, remain unclear. This study involved the collection of a 4.3-m-depth co-contaminated soil profile to investigate the vertical distribution patterns of co-contaminants (namely, arsenic, cadmium, and polychlorinated biphenyls (PCBs)) and their binding mechanisms with environmental factors. The results indicated a notable downward accumulation of inorganic contaminants with increasing soil depth, whereas PCBs were predominantly concentrated in the uppermost layer. Chemical extraction and synchrotron radiation analysis highlighted a positive correlation between the abundance of reactive iron (FeCBD) and both co-contaminants and microbial communities in the contaminated site. Furthermore, Mantel tests and structural equation modeling (SEM) demonstrated the direct impacts of FeCBD and microbial communities on co-contaminants within the soil profile. Overall, these results provided valuable insights into the migration and transformation characteristics of co-contaminants and their binding mechanisms mediated by minerals, organic matter, and microorganisms.
Collapse
Affiliation(s)
- Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Miao-Miao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Xiang-Yang Zhao
- DeepBiome. Co. Ltd., No. 38 Debao Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200031, China
| | - Qiao-Yun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Liu GH, Yang S, Han S, Xie CJ, Liu X, Rensing C, Zhou SG. Nitrogen fixation and transcriptome of a new diazotrophic Geomonas from paddy soils. mBio 2023; 14:e0215023. [PMID: 37855611 PMCID: PMC10746287 DOI: 10.1128/mbio.02150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE The ability of Geomonas species to fix nitrogen gas (N2) is an important metabolic feature for its application as a plant growth-promoting rhizobacterium. This research is of great importance as it provides the first comprehensive direct experimental evidence of nitrogen fixation by the genus Geomonas in pure culture. We isolated a number of Geomonas strains from paddy soils and determined that nifH was present in these strains. This study demonstrated that these Geomonas species harbored genes encoding nitrogenase, as do Geobacter and Anaeromyxobacter in the same class of Deltaproteobacteria. We demonstrated N2-dependent growth of Geomonas and determined regulation of gene expression associated with nitrogen fixation. The research establishes and advances our understanding of nitrogen fixation in Geomonas.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| |
Collapse
|
5
|
Hu W, Wang X, Wang X, Xu Y, Li R, Zhao L, Ren W, Teng Y. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130697. [PMID: 36599277 DOI: 10.1016/j.jhazmat.2022.130697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Biological nitrogen fixation (BNF) driven by diazotrophs is a major means of increasing available nitrogen (N) in paddy soil, in addition to anthropogenic fertilization. However, the influence of long-term polychlorinated biphenyl (PCB) contamination on the diazotrophic community and nitrogen fixation in paddy soil is poorly understood. In this study, samples were collected from paddy soil subjected to > 30 years of PCB contamination, and the soil diazotrophic community and N2 fixation rate were evaluated by Illumina MiSeq sequencing and acetylene reduction assays, respectively. The results indicated that high PCB contamination increased diazotrophic abundance and the N2 fixation rate, and altered diazotrophic community structure in the paddy soil. The random forest model demonstrated that the β-diversity of the diazotrophic community was the most significant predictor of the N2 fixation rate. Structure equation modeling identified a specialized keystone diazotrophic ecological cluster, predominated by Bradyrhizobium, Desulfomonile, and Cyanobacteria, as the key driver of N2 fixation. Overall, our findings indicated that long-term PCB contamination enhanced the N2 fixation rate by altering diazotrophic community abundance and structure, which may deepen our understanding of the ecological function of diazotrophs in organic-contaminated soil.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Yang S, Tang R, Han S, Xie CJ, Narsing Rao MP, Liu GH, Zhou SG. Fundidesulfovibrio agrisoli sp. nov., A Nitrogen-Fixing Bacterium Isolated from Rice Field. Curr Microbiol 2023; 80:68. [PMID: 36609736 DOI: 10.1007/s00284-022-03140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
A strictly anaerobic nitrogen-fixing strain, designated SG106T, was isolated from rice field. The 16S rRNA gene sequence analysis showed that strain SG106T was closely related to the type strain of Fundidesulfovibrio magnetotacticus (97.3%). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (constructed using a concatenated alignment of 117 conserved bacterial single-copy genes with GTDB-Tk) trees, strain SG106T clustered with members of the genus Fundidesulfovibrio. Strain SG106T grew at 20-40 °C and 0-0.4% (w/v) NaCl. Desulfoviridin was found in the strain SG106T. The genomic DNA G + C content of strain SG106T was 66.0%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG106T and the closely related F. magnetotacticus were 78.4% and 21.7%, respectively. Genome analysis showed that strain SG106T encodes genes for nitrogen fixation (nifHDK). Acetylene reduction experiments showed that the nitrogenase activity of strain SG106T could reach 224.7 μmol C2H4 g-1 protein h-1. Based on the above results, strain SG106T represents a novel species of the genus Fundidesulfovibrio, for which the name Fundidesulfovibrio agrisoli sp. nov. is proposed. The type strain is SG106T (= GDMCC 1.3136T = JCM 35588T).
Collapse
Affiliation(s)
- Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 350003, People's Republic of China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China.
| |
Collapse
|
7
|
Chen D, Hou H, Zhou S, Zhang S, Liu D, Pang Z, Hu J, Xue K, Du J, Cui X, Wang Y, Che R. Soil diazotrophic abundance, diversity, and community assembly mechanisms significantly differ between glacier riparian wetlands and their adjacent alpine meadows. Front Microbiol 2022; 13:1063027. [PMID: 36569049 PMCID: PMC9772447 DOI: 10.3389/fmicb.2022.1063027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Global warming can trigger dramatic glacier area shrinkage and change the flux of glacial runoff, leading to the expansion and subsequent retreat of riparian wetlands. This elicits the interconversion of riparian wetlands and their adjacent ecosystems (e.g., alpine meadows), probably significantly impacting ecosystem nitrogen input by changing soil diazotrophic communities. However, the soil diazotrophic community differences between glacial riparian wetlands and their adjacent ecosystems remain largely unexplored. Here, soils were collected from riparian wetlands and their adjacent alpine meadows at six locations from glacier foreland to lake mouth along a typical Tibetan glacial river in the Namtso watershed. The abundance and diversity of soil diazotrophs were determined by real-time PCR and amplicon sequencing based on nifH gene. The soil diazotrophic community assembly mechanisms were analyzed via iCAMP, a recently developed null model-based method. The results showed that compared with the riparian wetlands, the abundance and diversity of the diazotrophs in the alpine meadow soils significantly decreased. The soil diazotrophic community profiles also significantly differed between the riparian wetlands and alpine meadows. For example, compared with the alpine meadows, the relative abundance of chemoheterotrophic and sulfate-respiration diazotrophs was significantly higher in the riparian wetland soils. In contrast, the diazotrophs related to ureolysis, photoautotrophy, and denitrification were significantly enriched in the alpine meadow soils. The iCAMP analysis showed that the assembly of soil diazotrophic community was mainly controlled by drift and dispersal limitation. Compared with the riparian wetlands, the assembly of the alpine meadow soil diazotrophic community was more affected by dispersal limitation and homogeneous selection. These findings suggest that the conversion of riparian wetlands and alpine meadows can significantly alter soil diazotrophic community and probably the ecosystem nitrogen input mechanisms, highlighting the enormous effects of climate change on alpine ecosystems.
Collapse
Affiliation(s)
- Danhong Chen
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Haiyan Hou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Dong Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhe Pang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Kai Xue
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Li D, Chen J, Zhang X, Shi W, Li J. Structural and functional characteristics of soil microbial communities in response to different ecological risk levels of heavy metals. Front Microbiol 2022; 13:1072389. [PMID: 36569064 PMCID: PMC9772559 DOI: 10.3389/fmicb.2022.1072389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The potential ecological risk index (RI) is the most commonly used method to assess heavy metals (HMs) contamination in soils. However, studies have focused on the response of soil microorganisms to different concentrations, whereas little is known about the responses of the microbial community structures and functions to HMs at different RI levels. Methods Here, we conducted soil microcosms with low (L), medium (M) and high (H) RI levels, depending on the Pb and Cd concentrations, were conducted. The original soil was used as the control (CK). High-throughput sequencing, qPCR, and Biolog plate approaches were applied to investigate the microbial community structures, abundance, diversity, metabolic capacity, functional genes, and community assembly processes. Result The abundance and alpha diversity indices for the bacteria at different RI levels were significantly lower than those of the CK. Meanwhile, the abundance and ACE index for the fungi increased significantly with RI levels. Acidobacteria, Basidiomycota and Planctomycetes were enriched as the RI level increased. Keystone taxa and co-occurrence pattern analysis showed that rare taxa play a vital role in the stability and function of the microbial community at different RI levels. Network analysis indicates that not only did the complexity and vulnerability of microbial community decrease as risk levels increased, but that the lowest number of keystone taxa was found at the H level. However, the microbial community showed enhanced intraspecific cooperation to adapt to the HMs stress. The Biolog plate data suggested that the average well color development (AWCD) reduced significantly with RI levels in bacteria, whereas the fungal AWCD was dramatically reduced only at the H level. The functional diversity indices and gene abundance for the microorganisms at the H level were significantly lower than those the CK. In addition, microbial community assembly tended to be more stochastic with an increase in RI levels. Conclusion Our results provide new insight into the ecological impacts of HMs on the soil microbiome at different risk levels, and will aid in future risk assessments for Pb and Cd contamination.
Collapse
|
9
|
Zhou J, Wu C, Pang S, Yang L, Yao M, Li X, Xia S, Rittmann BE. Dissimilatory and Cytoplasmic Antimonate Reductions in a Hydrogen-Based Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14808-14816. [PMID: 36201672 DOI: 10.1021/acs.est.2c04939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A hydrogen-based membrane biofilm reactor (H2-MBfR) was operated to investigate the bioreduction of antimonate [Sb(V)] in terms of Sb(V) removal, the fate of Sb, and the pathways of reduction metabolism. The MBfR achieved up to 80% Sb(V) removal and an Sb(V) removal flux of 0.55 g/m2·day. Sb(V) was reduced to Sb(III), which mainly formed Sb2O3 precipitates in the biofilm matrix, although some Sb(III) was retained intracellularly. High Sb(V) loading caused stress that deteriorated performance that was not recovered when the high Sb(V) loading was removed. The biofilm community consisted of DSbRB (dissimilatory Sb-reduction bacteria), SbRB (Sb-resistant bacteria), and DIRB (dissimilatory iron-reducing bacteria). Dissimilatory antimonate reduction, mediated by the respiratory arsenate reductase ArrAB, was the main reduction route, but respiratory reduction coexisted with cytoplasmic Sb(V)-reduction mediated by arsenate reductase ArsC. Increasing Sb(V) loading caused stress that led to increases in the expression of arsC gene and intracellular accumulation of Sb(III). By illuminating the roles of the dissimilatory and cytoplasmic Sb(V) reduction mechanism in the biofilms of the H2-MBfR, this study reveals that the Sb(V) loading should be controlled to avoid stress that deteriorates Sb(V) reduction.
Collapse
Affiliation(s)
- Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Mengying Yao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|