1
|
Chen X, Zhou Y, Mai Z, Cheng H, Wang X. Mangroves increased the mercury methylation potential in the sediment by producing organic matters and altering microbial methylators community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178457. [PMID: 39799656 DOI: 10.1016/j.scitotenv.2025.178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation. MeHg concentrations in the sediments from the mangrove interior (1.03 ± 0.34 ng g-1 dw) were significantly higher than those in mudflats (0.26 ± 0.08 ng g-1 dw) and mangrove fringe (0.45 ± 0.10 ng g-1 dw). Mangrove vegetation also promoted the accumulation of organic matters in sediments, which stimulated the growth of methylators, ultimately leading to an elevated MeHg level in the sediment. The data from 16S sequencing and random forest analysis further indicated that the increased abundances of Desulfococcus and Desulfosarcina, which belong to complete-oxidizing microbes with acetyl-CoA pathway and are favored by mangrove vegetation, were the primary contributors to MeHg production. Besides, syntrophic partners of methylators (e.g. Syntrophus) also play a considerable role in MeHg production. The present findings provide a deep understanding of Hg-methylation in mangrove wetlands, and offers valuable insights into of the interactions between mangrove plants and soil microbiome in the presence of Hg contamination.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanwu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhimao Mai
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Peng X, Yang Y, Yang S, Li L, Song L. Recent advance of microbial mercury methylation in the environment. Appl Microbiol Biotechnol 2024; 108:235. [PMID: 38407657 PMCID: PMC10896945 DOI: 10.1007/s00253-023-12967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.
Collapse
Affiliation(s)
- Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Yan Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Liyan Song
- School of resources and environmental engineering, Anhui University, No 111 Jiulong Road, Economic and Technology Development Zone, Hefei, 230601, People's Republic of China.
| |
Collapse
|
3
|
Kodamatani H, Kubo S, Takeuchi A, Kanzaki R, Tomiyasu T. Sensitive Detection of Nitrite and Nitrate in Seawater by 222 nm UV-Irradiated Photochemical Conversion to Peroxynitrite and Ion Chromatography-Luminol Chemiluminescence System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5924-5933. [PMID: 36973229 DOI: 10.1021/acs.est.3c00273] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive detection methods for nitrite (NO2-) and nitrate (NO3-) ions are essential to understand the nitrogen cycle and for environmental protection and public health. Herein, we report a detection method that combines ion-chromatographic separation of NO2- and NO3-, on-line photochemical conversion of these ions to peroxynitrite (ONOO-) by irradiation with a 222 nm excimer lamp, and chemiluminescence from the reaction between luminol and ONOO-. The detection limits for NO2- and NO3- were 0.01 and 0.03 μM, respectively, with linear ranges of 0.010-2.0 and 0.10-3.0 μM, respectively, at an injection volume of 1 μL. The results obtained by the proposed method for seawater analysis corresponded with those of a reference method (AutoAnalyzer based on the Griess reaction). As luminol chemiluminescence can measure ONOO- at picomolar concentrations, our method is expected to be able to detect NO2- and NO3- at picomolar concentrations owing to the high conversion ratio to ONOO- (>60%), assuming that contamination and background chemiluminescence issues can be resolved. This method has the potential to emerge as an innovative technology for NO2- and NO3- detection in various samples.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Shotaro Kubo
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Akinori Takeuchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryo Kanzaki
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Lin H, Moody ERR, Williams TA, Moreau JW. On the Origin and Evolution of Microbial Mercury Methylation. Genome Biol Evol 2023; 15:evad051. [PMID: 36951100 PMCID: PMC10083202 DOI: 10.1093/gbe/evad051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
The origin of microbial mercury methylation has long been a mystery. Here, we employed genome-resolved phylogenetic analyses to decipher the evolution of the mercury-methylating gene, hgcAB, constrain the ancestral origin of the hgc operon, and explain the distribution of hgc in Bacteria and Archaea. We infer the extent to which vertical inheritance and horizontal gene transfer have influenced the evolution of mercury methylators and hypothesize that evolution of this trait bestowed the ability to produce an antimicrobial compound (MeHg+) on a potentially resource-limited early Earth. We speculate that, in response, the evolution of MeHg+-detoxifying alkylmercury lyase (encoded by merB) reduced a selective advantage for mercury methylators and resulted in widespread loss of hgc in Bacteria and Archaea.
Collapse
Affiliation(s)
- Heyu Lin
- School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, United Kingdom
| | - John W Moreau
- School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Geographical and Earth Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
5
|
Tada Y, Marumoto K, Iwamoto Y, Takeda K, Sakugawa H. Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. MARINE POLLUTION BULLETIN 2023; 186:114381. [PMID: 36459771 DOI: 10.1016/j.marpolbul.2022.114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) adversely affects human and environmental health. To evaluate the mercury (Hg) speciation (methylation, demethylation, and reduction) of microorganisms in coastal seawater, we analyzed the microbial functional gene sets involved in Hg methylation (hgcA and hgcB), demethylation (merB), and reduction (merA) using a metagenomic approach in the eastern and western parts (the Kii and Bungo channels, respectively) of the Seto Inland Sea (SIS) of Japan. We determined the concentration of dissolved total mercury (dTHg) and methylated mercury (dMeHg) in seawater. The metagenomic analysis detected hgcAB, merA, and merB in both channels, whereas the phylogenies of these genes differed between them. A correlation between Hg concentration (both dTHg and dMeHg) and the relative abundance of each gene was not observed. Our data suggests that microbial Hg methylation and demethylation could occur in the SIS and there could be a distinct microbial Hg speciation process between the Kii and Bungo channels.
Collapse
Affiliation(s)
- Yuya Tada
- National Institute for Minamata Disease, Department of Environment and Public Health, Kumamoto, Japan.
| | - Kohji Marumoto
- National Institute for Minamata Disease, Department of Environment and Public Health, Kumamoto, Japan
| | - Yoko Iwamoto
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| | - Kazuhiko Takeda
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| | - Hiroshi Sakugawa
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| |
Collapse
|