1
|
Ngbede EO, Junker V, Kolte B, Frentrup M, Boldt J, Fawley WN, Wilcox MH, Kuijper EJ, Smits WK, Nübel U. Clostridioides difficile recovered from hospital patients, livestock and dogs in Nigeria share near-identical genome sequences. Microb Genom 2025; 11. [PMID: 39883484 DOI: 10.1099/mgen.0.001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Genomic data on Clostridioides difficile from the African continent are currently lacking, resulting in the region being under-represented in global analyses of C. difficile infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare C. difficile isolates from diarrhoeic human patients (n=142), livestock (n=38), poultry manure (n=5) and dogs (n=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global C. difficile population. In addition, selected isolates were tested for antimicrobial susceptibility (n=33) and characterized by PCR ribotyping (n=53). Hierarchical clustering of core-genome multilocus sequence typing (cgMLST) allelic profiles revealed large diversity at the level HC150 (i.e. clusters of related genomes with maximally 150 pairwise allelic differences), which was previously shown to correlate with PCR ribotypes (RT). While several globally disseminated strains were detected, including HC150_1 (associated with RT078), HC150_3 (RT001) and HC150_3622 (RT014), 42 HC150 clusters (79%) represented unique genotypes that were new to the public genomic record, and 16 (30%) of these were novel PCR ribotypes. Considerable proportions of the C. difficile isolates displayed resistance to fluoroquinolones, macrolides and linezolid, potentially reflecting human and animal antibiotic consumption patterns in the region. Notably, our comparative phylogenomic analyses revealed human-human, human-livestock and farm-farm sharing of near-identical C. difficile genomes (≤2 core-genome allelic differences), suggesting the continued spread of multiple strains across human and animal (pig, poultry, cattle and dog) host populations. Our findings highlight the interconnectivity between livestock production and the epidemiology of human CDI and inform the need for increased CDI awareness among clinicians in this region. A large proportion of C. difficile strains appeared to be unique to the region, reflecting both the significant geographic patterning present in the C. difficile population and a general need for additional pathogen sequencing data from Africa.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria
- Present address: Institute of Medical Microbiology and Hygiene University of Saarland, Homburg, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Baban Kolte
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Judith Boldt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Warren N Fawley
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Mark H Wilcox
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Ed J Kuijper
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Wiep Klaas Smits
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
2
|
Siroglavic M, Higgins PG, Kanizaj L, Ferencak I, Juric D, Augustin G, Budimir A. Whole-Genome Sequencing-Based Characterization of Clostridioides difficile Infection Cases at the University Hospital Centre Zagreb. Microorganisms 2024; 12:2434. [PMID: 39770637 PMCID: PMC11676685 DOI: 10.3390/microorganisms12122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
We investigated the intra-hospital distribution of C. difficile strains by whole-genome sequencing (WGS) of isolates collected in 2022 at the University Hospital Centre (UHC) Zagreb. In total, 103 patients with first-episode CDI in 2022 at UHC Zagreb were included, based on the screening stool antigen test for GDH (RidaQuick CD GDH; R-Biopharm AG, Germany), confirmed by Eazyplex C. difficile assays (Eazyplex CD assay; AmplexDiagnostics GmbH, Germany) specific for A, B, and binary toxins. Demographic and clinical data were retrospectively analyzed from electronic medical records. All samples were subjected to WGS analysis. Genetic clusters were formed from isolates with no more than six allelic differences according to core genome MLST. We identified six clusters containing 2-59 isolates with 15 singletons and 30 instances of possible intra-hospital transmission, mostly in the COVID-19 ward. WGS analysis proved useful in identifying clusters of isolates connecting various patient wards with possible transmission routes in the hospital setting. It could be used to support local and national surveillance of CDI infections and their transmission pathways.
Collapse
Affiliation(s)
- Marko Siroglavic
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany;
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Lucija Kanizaj
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
| | - Ivana Ferencak
- Department of Microbiology, Croatian Institute of Public Health, Rockefeller st. 7, 10000 Zagreb, Croatia; (I.F.); (D.J.)
| | - Dragan Juric
- Department of Microbiology, Croatian Institute of Public Health, Rockefeller st. 7, 10000 Zagreb, Croatia; (I.F.); (D.J.)
| | - Goran Augustin
- Department of Surgery, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia
| | - Ana Budimir
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
- Department of Microbiology and Parasitology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Tercero-Guerrero D, Blanco JL, Hernández M, Torre-Fuentes L, Alvarez J, García ME. Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BMC Vet Res 2024; 20:479. [PMID: 39434132 PMCID: PMC11492571 DOI: 10.1186/s12917-024-04332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.
Collapse
Affiliation(s)
- Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain.
| | - Marta Hernández
- Area of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Julio Alvarez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| |
Collapse
|
4
|
Miyazaki T, Aoki K, Maeda T, Komori K, Yoshizawa S, Ishii Y, Urita Y, Tateda K. A molecular epidemiological and transmission analysis of Clostridioides difficile using draft whole-genome sequencing in a single hospital. BMC Infect Dis 2024; 24:989. [PMID: 39289598 PMCID: PMC11406711 DOI: 10.1186/s12879-024-09841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The nosocomial transmission of toxin-producing Clostridioides difficile is a significant concern in infection control. C. difficile, which resides in human intestines, poses a risk of transmission, especially when patients are in close contact with medical staff. METHODS To investigate the nosocomial transmission of C. difficile in a single center, we analyzed the genetic relationships of the bacteria. This was done using draft whole-genome sequencing (WGS) and examining single nucleotide polymorphisms (SNPs) in core-genome, alongside data regarding the patient's hospital wards and room changes. Our retrospective analysis covered 38 strains, each isolated from a different patient, between April 2014 and January 2015. RESULTS We identified 38 strains that were divided into 11 sequence types (STs). ST81 was the most prevalent (n = 11), followed by ST183 (n = 10) and ST17 (n = 7). A cluster of strains that indicated suspected nosocomial transmission (SNT) was identified through SNP analysis. The draft WGS identified five clusters, with 16 of 38 strains belonging to these clusters. There were two clusters for ST81 (ST81-SNT-1 and ST81-SNT-2), two for ST183 (ST183-SNT-1 and ST183-SNT-2), and one for ST17 (ST17-SNT-1). ST183-SNT-1 was the largest SNT cluster, encompassing five patients who were associated with Wards A, B, and K. The most frequent room changer was a patient labeled Pt08, who changed rooms seven times in Ward B. Patients Pt36 and Pt10, who were also in Ward B, had multiple admissions and discharges during the study period. CONCLUSIONS Additional culture tests and SNP analysis of C. difficile using draft WGS revealed silent transmission within the wards, particularly in cases involving frequent room changes and repeated admissions and discharges. Monitoring C. difficile transmission using WGS-based analysis could serve as a valuable marker in infection control management.
Collapse
Affiliation(s)
- Taito Miyazaki
- Infection Control Section, Toho University Omori Medical Center, Tokyo, Japan
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Sadako Yoshizawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Laboratory Medicine, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
5
|
Brouwer L, Carroll A, McNamara E. Genotypic and phenotypic antimicrobial resistance of Irish Clostridioides difficile isolates, 2022. Anaerobe 2024; 88:102857. [PMID: 38670525 DOI: 10.1016/j.anaerobe.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES Infection with Clostridioides difficile usually occurs after antibiotic treatment for other infections and can cause gastro-intestinal disorders of variable severity. C. difficile can be resistant to a wide spectrum of antimicrobials. Detection of antimicrobial resistance (AMR) is important to direct optimal treatment and surveillance of AMR patterns in the overall population. Correlation between genotypic markers and phenotypic AMR is not yet well defined. The aim for this study is to assess whether and to what extent genotypic determinants of AMR correlate with phenotypic resistance. METHODS C. difficile isolates (n = 99) were phenotypically characterized for resistance to eight antibiotics using Sensititre plates or E-tests. Their genomes were screened for genetic markers of resistance. Accuracy, sensitivity, specificity, positive and negative predictive values were calculated. RESULTS We found high rates of resistance (>50 %) to cefoxitin and clindamycin, intermediate rates of resistance (10 %-50 %) to moxifloxacin and tetracycline and low rates of resistance (<10 %) to imipenem, metronidazole, vancomycin, and rifampicin. For moxifloxacin, tetracycline, and clindamycin, we found a good correlation between genotypic and phenotypic AMR, with an overall accuracy of 98 % (95 % CI 93%-100 %), 78 % (95 % CI 68%-86 %) and 86 % (95 % CI 77%-92 %) respectively. For the other five antibiotics, accurate estimates on the correlation could not be made. CONCLUSION Our results suggest that for moxifloxacin, tetracycline and clindamycin, phenotypic resistance in C. difficile can be predicted by genetic indicators and used for public health purposes. However, for the other five antibiotics, the model is not accurate and further development is necessary.
Collapse
Affiliation(s)
- Lieke Brouwer
- Clostridioides Difficile National Reference Laboratory, Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Dublin, Ireland; European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.
| | - Anne Carroll
- Clostridioides Difficile National Reference Laboratory, Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Dublin, Ireland; European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Eleanor McNamara
- Clostridioides Difficile National Reference Laboratory, Public Health Laboratory, Health Service Executive, Cherry Orchard Hospital, Dublin, Ireland; European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
6
|
Bogiel T, Dura A, Woźniak M, Mikucka A, Kanarek P. Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes. Gels 2024; 10:343. [PMID: 38786259 PMCID: PMC11121280 DOI: 10.3390/gels10050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile is a complex of anaerobic bacteria responsible for the epidemics of post-antibiotic diarrhea as one of the examples of CDI (Clostridioides difficile infection). As many as 70% of cases concern hospitalized patients, particularly those in intensive care units. Ribotyping is one of the most common methods for differentiating bacterial strains. The purpose of this work was to show the effectiveness of the gel electrophoresis-based PCR ribotyping method and the Webribo database for typing C. difficile isolates, including the hypervirulent 027 ribotype. DNA samples extracted from 69 C. difficile strains with previously marked genotypes were included in this study. PCR was performed using 16S-23S primers, and capillary gel electrophoresis was performed on the Applied Biosystem 3130xl Genetic Analyzer. The Webribo database was applied for ribotype assignment. Out of 69 samples, 48 belonged to already known ribotypes, 13 represented new ribotypes and 8 was indicated as similar to the existing ones, having some differences. Capillary gel electrophoresis-based PCR is an effective method for the differentiation of C. difficile ribotypes and can be recognized as a very useful tool in epidemiological studies, while the Webribo database is a useful and an accessible database for a quick analysis of C. difficile ribotypes.
Collapse
Affiliation(s)
- Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Alicja Dura
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.D.)
| | - Marcin Woźniak
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.D.)
| | - Agnieszka Mikucka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| |
Collapse
|
7
|
Bloomfield M, Hutton S, Burton M, Tarring C, Velasco C, Clissold C, Balm M, Kelly M, Macartney-Coxson D, White R. Early identification of a ward-based outbreak of Clostridioides difficile using prospective multilocus sequence type-based Oxford Nanopore genomic surveillance. Infect Control Hosp Epidemiol 2024; 45:1-7. [PMID: 38706217 PMCID: PMC11518675 DOI: 10.1017/ice.2024.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To describe an outbreak of sequence type (ST)2 Clostridioides difficile infection (CDI) detected by a recently implemented multilocus sequence type (MLST)-based prospective genomic surveillance system using Oxford Nanopore Technologies (ONT) sequencing. SETTING Hemato-oncology ward of a public tertiary referral centre. METHODS From February 2022, we began prospectively sequencing all C. difficile isolated from inpatients at our institution on the ONT MinION device, with the output being an MLST. Bed-movement data are used to construct real-time ST-specific incidence charts based on ward exposures over the preceding three months. RESULTS Between February and October 2022, 76 of 118 (64.4%) CDI cases were successfully sequenced. There was wide ST variation across cases and the hospital, with only four different STs being seen in >4 patients. A clear predominance of ST2 CDI cases emerged among patients with exposure to our hemato-oncology ward between May and October 2022, which totalled ten patients. There was no detectable rise in overall CDI incidence for the ward or hospital due to the outbreak. Following a change in cleaning product to an accelerated hydrogen peroxide wipe and several other interventions, no further outbreak-associated ST2 cases were detected. A retrospective phylogenetic analysis using original sequence data showed clustering of the suspected outbreak cases, with the exception of two cases that were retrospectively excluded from the outbreak. CONCLUSIONS Prospective genomic surveillance of C. difficile using ONT sequencing permitted the identification of an outbreak of ST2 CDI that would have otherwise gone undetected.
Collapse
Affiliation(s)
- Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Carolyn Clissold
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Michelle Balm
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Matthew Kelly
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | | | - Rhys White
- Institute of Environmental Science and Research, Health Group, Porirua, New Zealand
| |
Collapse
|
8
|
Angulo FJ, Ghia C, Fletcher MA, Ozbilgili E, Morales GDC. The burden of Clostridioides difficile infections in South-East Asia and the Western Pacific: A narrative review. Anaerobe 2024; 86:102821. [PMID: 38336258 DOI: 10.1016/j.anaerobe.2024.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Clostridioides difficile (formerly Clostridium difficile) is well-documented in Europe and North America to be a common cause of healthcare-associated gastrointestinal tract infections. In contrast, C difficile infection (CDI) is infrequently reported in literature from Asia, which may reflect a lack of clinician awareness. We conducted a narrative review to better understand CDI burden in Asia. METHODS We searched the PubMed database for English language articles related to C difficile, Asia, epidemiology, and molecular characteristics (eg, ribotype, antimicrobial resistance). RESULTS Fifty-eight articles that met eligibility criteria were included. C difficile prevalence ranged from 7.1% to 45.1 % of hospitalized patients with diarrhea, and toxigenic strains among all C difficile in these patients ranged from 68.2% to 91.9 % in China and from 39.0% to 60.0 % outside of China. Widespread C difficile ribotypes were RT017, RT014/020, RT012, and RT002. Recurrence in patients with CDI ranged from 3.0% to 17.2 %. Patients with CDI typically had prior antimicrobial use recently. High rates of resistance to ciprofloxacin, clindamycin, and erythromycin were frequently reported. CONCLUSION The regional CDI burden in Asia is still incompletely documented, seemingly due to low awareness and limited laboratory testing. Despite this apparent under recognition, the current CDI burden highlights the need for broader surveillance and for application of preventative measures against CDI in Asia.
Collapse
Affiliation(s)
- Frederick J Angulo
- Medical Development and Scientific/Clinical Affairs, Vaccines, Antivirals, and Evidence Generation, Pfizer Inc., 500 Arcola Rd., Collegeville, PA, 19426, USA.
| | - Canna Ghia
- Pfizer Ltd 70, G Block Rd, Bandra Kurla Complex, Mumbai, Maharashtra 400051, India.
| | - Mark A Fletcher
- Emerging Markets Medical Affairs, Vaccines, Pfizer, 23-25 avenue du Docteur Lannelongue, 75014 Paris, France.
| | - Egemen Ozbilgili
- Emerging Markets Medical Affairs, Vaccines, Pfizer Pte Ltd., 31 Tuas South Ave 6, 637578, Singapore.
| | | |
Collapse
|
9
|
Li X, Wang Y, Cao R, Xiao F, Wang X, Ye L, Xiao Y, Li D, Zhang T. Antimicrobial Resistance of Clostridioides difficile in Children from a Tertiary Pediatric Hospital in Shanghai, China. Infect Drug Resist 2024; 17:329-339. [PMID: 38293314 PMCID: PMC10826549 DOI: 10.2147/idr.s441312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Background Our previous study reported a high rate of recurrence in children with Clostridioides difficile (C. difficile) infection (CDI) after conventional antibiotic therapy. Here, we aimed to explore whether metronidazole and vancomycin resistant C. difficile isolates are circulating in pediatric CDI. Methods Antimicrobial susceptibility testing (AST) using the agar dilution method according to the Clinical and Laboratory Standard Institute (CLSI) were performed on C. difficile isolates collected from children with CDI between 2019 and 2022 at the Shanghai Children's Hospital. Whole-genome sequencing (WGS) was performed on all C. difficile isolates, and the presence of antibiotic resistance genes (ARGs) were identified using Resfinder and the Comprehensive Antibiotic Resistance Database (CARD). The presence of plasmid pCD-METRO was detected using SRST2 (v0.2.0) against 8 pCD-METRO coding sequences. Results A total of 50 C. difficile isolates were collected from stools of CDI children. The overall resistance rate on all isolates was 30.00% for metronidazole, 6.00% for vancomycin, 0% for rifaximin, 2.00% for rifampin, 24.00% for meropenem, 100.00% for ceftriaxone and clindamycin, 86.00% for erythromycin, 30.0% for levofloxacin, and 50.0% for tetracycline. Multidrug-resistant (MDR) was presented in 44 isolates (88.00%). Sixteen reported potential ARGs relating with resistance to antibiotic classes of aminoglycoside (AAC(6')-Ie-APH(2")-Ia, aad(6), ANT(6)-Ib, APH(2")-If, APH(3')-IIIa), lincosamide-clindamycin-erythromycin (ErmB, ErmQ), fluoroquinolones (CdeA), glycopeptides (vanRG), nucleoside (SAT-4), tetracycline (tetM, tetA(P), tetB(P), tetO), and trimethoprim (dfrF) were identified. However, the pCD-METRO plasmid and vanA/B were not detected in any isolates. Conclusion C. difficile isolates from children with reduced susceptibility to metronidazole and vancomycin are emerging in pediatric CDI in China. The lack of pCD-METRO plasmid and vanA/B associated with reduced antibiotic susceptibility suggests there are additional mechanisms of resistance.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rong Cao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xufei Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lin Ye
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Boyanova L, Dimitrov G, Gergova R, Hadzhiyski P, Markovska R. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev Clin Pharmacol 2023; 16:925-938. [PMID: 37642560 DOI: 10.1080/17512433.2023.2252331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Updating data on Clostridioides difficile antibiotic resistance is important for treatment improvement of C. difficile infections (CDIs). AREAS COVERED Results from 20 countries were included. The mean resistance to 2 mg/l vancomycin, 2 mg/l metronidazole, 4 mg/l moxifloxacin, and 4 mg/l clindamycin was 4.7% (0 to ≥ 26% in two studies), 2.6% (0 to ≥ 40% in 3 studies), 34.9% (6.6->80%), and 61.0% (30->90%), respectively. Resistance to erythromycin (>60-88%), rifampin (>23-55.0%), imipenem (0.6 to > 78% in a clone), tigecycline (0-<5.0%), and fidaxomicin (0-2%) was also found. Resistance to ≥ 5 antibiotics of different classes was reported in some countries. High resistance and multidrug resistance were observed in hypervirulent and epidemic strains. Although only 1% of COVID-19 patients had CDIs, the proportion might be underestimated. EXPERT OPINION C. difficile antimicrobial susceptibility varied by country/region, study period, and circulating ribotypes. For CDI treatment, fidaxomicin (preferably) or vancomycin is recommended, while metronidazole is suitable for mild infections. New approaches, including biotherapeutics (Rebyota), strains, antibiotics (ridinilazole and ibezapolstat), and monoclonal antibodies/cocktails merit further evaluation. Because of the resistance rate variations, C. difficile antibiotic susceptibility should be regularly monitored. Post-COVID-19 resistance should be separately presented. Some discrepancies between vancomycin and metronidazole results need to be clarified.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Dimitrov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
Wen BJ, Dong N, Ouyang ZR, Qin P, Yang J, Wang WG, Qiang CX, Li ZR, Niu YN, Zhao JH. Prevalence and molecular characterization of Clostridioides difficile infection in China over the past 5 years: a systematic review and meta-analysis. Int J Infect Dis 2023; 130:86-93. [PMID: 36906122 DOI: 10.1016/j.ijid.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVES The aim of this study was to provide an overview of the prevalence and molecular characteristics of Clostridioides difficile infection (CDI) in China in the past 5 years. METHODS A systematic literature review was conducted according to the preferred reporting items for systematic reviews and meta-analyses guidelines. Nine databases were searched for relevant studies published between January 2017 and February 2022. The Joanna Briggs Institute critical appraisal tool was used to assess the quality of included studies, and R software version 4.1.3 was used for data analysis. Funnel plots and Egger regression tests were also performed to assess publication bias. RESULTS A total of 50 studies were included in the analysis. The pooled prevalence of CDI in China was 11.4% (2696/26,852). The main circulating C. difficile strains in southern China were ST54, ST3, and ST37, consistent with the overall situation in China. However, the most prevalent genotype in northern China was ST2, which was previously underappreciated. CONCLUSION Based on our findings, increased awareness and management of CDI is necessary to reduce the prevalence of CDI in China.
Collapse
Affiliation(s)
- Bao-Jiang Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Ning Dong
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Zi-Rou Ouyang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Pu Qin
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Jing Yang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Wei-Gang Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Cui-Xin Qiang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Zhi-Rong Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Ya-Nan Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China
| | - Jian-Hong Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China.
| |
Collapse
|
12
|
Zhou Q, Rao F, Chen Z, Cheng Y, Zhang Q, Zhang J, Guan Z, He Y, Yu W, Cui G, Qi X, Hong W. The cwp66 Gene Affects Cell Adhesion, Stress Tolerance, and Antibiotic Resistance in Clostridioides difficile. Microbiol Spectr 2022; 10:e0270421. [PMID: 35357205 PMCID: PMC9045246 DOI: 10.1128/spectrum.02704-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacteria that is one of the leading causes of antibiotic-associated diarrhea. The cell wall protein 66 gene (cwp66) encodes a cell wall protein, which is the second major cell surface antigen of C. difficile. Although immunological approaches, such as antibodies and purified recombinant proteins, have been implemented to study the role of Cwp66 in cell adhesion, no deletion mutant of the cwp66 gene has yet been characterized. We constructed a cwp66 gene deletion mutant using Clustered Regularly Interspaced Short Palindromic Repeats Cpf1 (CRISPR-Cpf1) system. The phenotypic and transcriptomic changes of the Δcwp66 mutant compared with the wild-type (WT) strain were studied. The deletion of the cwp66 gene led to the decrease of cell adhesive capacity, cell motility, and stresses tolerance (to Triton X-100, acidic environment, and oxidative stress). Interestingly, the Δcwp66 mutant is more sensitive than the WT strain to clindamycin, ampicillin, and erythromycin but more resistant than the latter to vancomycin and metronidazole. Moreover, mannitol utilization capability in the Δcwp66 mutant was lost. Comparative transcriptomic analyses indicated that (i) 22.90-fold upregulation of cwpV gene and unable to express gpr gene were prominent in the Δcwp66 mutant; (ii) the cwp66 gene was involved in vancomycin resistance of C. difficile by influencing the expression of d-Alanine-d-Alanine ligase; and (iii) the mannose/fructose/sorbose IIC and IID components were upregulated in Δcwp66 mutant. The present work deepens our understanding of the contribution of the cwp66 gene to cell adhesion, stress tolerance, antibiotic resistance, and mannitol transportation of C. difficile. IMPORTANCE The cell wall protein 66 gene (cwp66) encodes a cell wall protein, which is the second major cell surface antigen of C. difficile. Although immunological approaches, such as antibodies and purified recombinant proteins, have been implemented to study the role of Cwp66 in cell adhesion, no deletion mutant of the cwp66 gene has yet been characterized. The current study provides direct evidence that the cwp66 gene serves as a major adhesion in C. difficile, and also suggested that deletion of the cwp66 gene led to the decrease of cell adhesive capacity, cell motility, and stresses tolerance (to Triton X-100, acidic environment, and oxidative stress). Interestingly, the antibiotic resistance and carbon source utilization profiles of the Δcwp66 mutant were significantly changed. These phenotypes were detrimental to the survival and pathogenesis of C. difficile in the human gut and may shed light on preventing C. difficile infection.
Collapse
Affiliation(s)
- Qingshuai Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fengqin Rao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yumei Cheng
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|