1
|
Lynch CRH, Drummond RSM, Jelley L, Baker L, Smit E, Fleming R, Billington C. Optimization and Benchmarking of RT-LAMP-CRISPR-Cas12a for the Detection of SARS-CoV-2 in Saliva. Int J Mol Sci 2025; 26:1806. [PMID: 40076433 PMCID: PMC11899638 DOI: 10.3390/ijms26051806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Resource-limited settings and supply chain difficulties faced throughout the COVID-19 pandemic prompted the development of rapid and alternative methods of detecting SARS-CoV-2. These methods include reverse-transcription loop-mediated isothermal amplification (RT-LAMP), reverse-transcription recombinase polymerase amplification (RT-RPA), and CRISPR-Cas12a fluorescence detection. We describe RT-LAMP, RT-RPA, and CRISPR-Cas12a assays for the detection of the N and E-gene amplicons of SARS-CoV-2 and the optimization of various assay components, including incubation temperatures, Cas12a enzymes, reporter molecules, and the use of a lyophilized RT-LAMP master mix. We also describe the testing of a one-tube RT-LAMP-CRISPR-Cas12a assay. The one-tube assay showed promise in reducing hands-on time and improving time-to-result. We found no improvements in assay sensitivity with RT-RPA, but did achieve detection at a lower copy number with the lyophilized RT-LAMP master mix compared to liquid reagent (50 vs. 100 copies at 20 min). When used to detect the presence of SARS-CoV-2 RNA in clinical saliva samples from 75 infected patients, the discriminatory ability of the optimized RT-LAMP-CRISPR Cas12a assay was found to be comparable with RT-qPCR, with a minor reduction in sensitivity.
Collapse
Affiliation(s)
- Courtney R. H. Lynch
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
| | - Revel S. M. Drummond
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand;
| | - Lauren Jelley
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
| | - Lauren Baker
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
| | - Erasmus Smit
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
- Virology and Immunology Department, LabPLUS, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland 1040, New Zealand
| | - Rachel Fleming
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
| | - Craig Billington
- Institute of Environmental Science and Research Limited, Porirua 5022, New Zealand (E.S.)
| |
Collapse
|
2
|
Yang Y, Yang Z, Zhang X, Niu B, Huang Q, Li Y, Yin H, Zhang X, Liao M, Jia W. Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay. Poult Sci 2025; 104:104745. [PMID: 39740498 PMCID: PMC11750554 DOI: 10.1016/j.psj.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025] Open
Abstract
Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed. These methods can identify AIV through the M gene and differentiate the H5, H7, and H9 subtypes via the HA gene. The first method utilizes RT-RAA isothermal amplification of the target sequence in combination with the "collateral effect" of the Cas13a protein. The results are measured using a real-time quantitative PCR instrument, with a Limit of Detection (LOD) as low as 1 copy/μL. The second method combines RT-RAA with Cas13a and a lateral flow assay, allowing results to be visually observed with the naked eye, with a LOD of 10 copies/μL. Both methods demonstrated specificity and sensitivity comparable to or exceeding that of qRT-PCR, suggesting strong potential for clinical application.
Collapse
Affiliation(s)
- Yujia Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinkui Zhang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Beibei Niu
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuhong Huang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Li
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Xianpeng Zhang
- Dongguan Key Laboratory of Zoonosis, Dongguan Center for Animal Disease Prevention and Control, Dongguan, 523128, China
| | - Ming Liao
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Song Y, Ma B, Li J, Shuai J, Zhang M. Multiplex reverse transcription recombinase polymerase amplification combined with lateral flow biosensor for simultaneous detection of three viral pathogens in cattle. Talanta 2025; 281:126775. [PMID: 39226697 DOI: 10.1016/j.talanta.2024.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Bovine viral diarrhea virus (BVDV), bovine epidemic fever virus (BEFV), and bovine respiratory syncytial virus (BRSV) cause respiratory symptoms in cattle. The absence of rapid, precise, and easily accessible diagnostic methods poses difficulties for herders and veterinary epidemiologists during outbreaks of major infectious animal diseases. Considering the mixed infection of viruses, a multiple-detection method, reverse transcription recombinase polymerase amplification (mRT-RPA) combined with a lateral flow biosensor (LFB), was established to simultaneously detect the three pathogens. This technique is based on the specific binding of three differently labeled RT-RPA products (DNA sequences) to antibodies on the three test lines of the LFB, achieving multiplex detection through the presence or absence of coloration on the LFB test lines. The fluorescence values of the LFB test lines are recorded by a test strip reader. The mRT-RPA-LFB assay completes detection at a constant temperature of 41 °C within 33 min. The limits of detection (LODs) for BVDV, BEFV and BRSV were 2.62 × 101, 2.42 × 101 and 2.56 × 101 copies/μL, respectively. No cross-reactivity was observed with the other six bovine viruses. The developed method showed satisfactory intra- and inter-assay precision, and the average coefficients of variation were ranged from 2.92 % to 3.99 %. The diagnostic sensitivity and specificity were 98.11 % and 100 %, respectively, which were highly consistent with the RT-qPCR assay, and the kappa value was 0.988 (95 % confidence interval, CI). In general, the mRT-RPA-LFB assay has the potential to become a powerful tool for rapid screening of cattle diseases because of its advantages such as fast detection speed, convenient operation, strong specificity, and high sensitivity.
Collapse
Affiliation(s)
- Yating Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou, 310018, China.
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Wang X, Yang R, Tang T, Zhou Y, Chen H, Jiang Y, Zhang S, Qin S, Wang M, Wang C. One-pot MCDA-CRISPR-Cas-based detection platform for point-of-care testing of severe acute respiratory syndrome coronavirus 2. Front Microbiol 2024; 15:1503356. [PMID: 39712894 PMCID: PMC11659237 DOI: 10.3389/fmicb.2024.1503356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Compared to quantitative real-time PCR (q-PCR), CRISPR-Cas-mediated technology is more suitable for point-of-care testing (POCT) and has potential for wider application in the future. Generally, the operational procedure of CRISPR-Cas-mediated diagnostic method consists of two independent steps, the reaction of signal amplification and the CRISPR-Cas-mediated signal detection. Complex multi-step procedures can easily lead to cross-contamination. To develop a convenient and rapid method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, we propose a MCTOP method (Multiple cross displacement amplification-CRISPR-Cas12b-based testing in one-pot), which targets the open reading frame 1ab (ORF1ab) and nucleocapsid protein (N) gene of SARS-CoV-2. This method combines MCDA isothermal amplification and CRISPR-Cas-mediated sequence-specific detection into a one-pot reaction. The optimal reaction was achieved with isothermal amplification of 40 min and CRISPR-Cas-based detection of 15 min, both at 64°C. Then, the results can be visualized by the real-time fluorescence instrument and also lateral flow biosensor. The lowest detection limit of the proposed method is 10 copies of each of target sequences, and it has no cross-reactivity with non-SARS-CoV-2 templates. In a clinical test of 70 pharyngeal swab samples, MCTOP assay showed a specificity of 100% and sensitivities of 98 and 96% for the real-time fluorescence instrument and lateral flow biosensor, respectively. The MCTOP developed in this study is a rapid, convenient, highly sensitive, and specific method for SARS-CoV-2 nucleic acid detection. It can be used as an effective point-of-care testing (POCT) tool for clinical diagnosis and epidemiologic surveillance of SARS-CoV-2 infections, especially suitable for the basic, field and clinical laboratory.
Collapse
Affiliation(s)
- Xiaoxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Central & Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
| | - Rui Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuzhen Zhou
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Heng Chen
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yihao Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Qin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wanitchanon T, Chewapreecha C, Uttamapinant C. Integrating Genomic Data with the Development of CRISPR-Based Point-of-Care-Testing for Bacterial Infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:241-258. [PMID: 39525369 PMCID: PMC11541280 DOI: 10.1007/s40588-024-00236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Purpose of Review Bacterial infections and antibiotic resistance contribute to global mortality. Despite many infections being preventable and treatable, the lack of reliable and accessible diagnostic tools exacerbates these issues. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based diagnostics has emerged as a promising solution. However, the development of CRISPR diagnostics has often occurred in isolation, with limited integration of genomic data to guide target selection. In this review, we explore the synergy between bacterial genomics and CRISPR-based point-of-care tests (POCT), highlighting how genomic insights can inform target selection and enhance diagnostic accuracy. Recent Findings We review recent advances in CRISPR-based technologies, focusing on the critical role of target sequence selection in improving the sensitivity of CRISPR-based diagnostics. Additionally, we examine the implementation of these technologies in resource-limited settings across Asia and Africa, presenting successful case studies that demonstrate their potential. Summary The integration of bacterial genomics with CRISPR technology offers significant promise for the development of effective point-of-care diagnostics.
Collapse
Affiliation(s)
- Thanyapat Wanitchanon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Claire Chewapreecha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbe, Wellcome Sanger Institute, Hinxton, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
6
|
Liu T, Liu Q, Chen F, Shi Y, Maimaiti G, Yang Z, Zheng S, Lu X, Li H, Chen Z. An accurate and convenient method for Mycoplasma pneumoniae via one-step LAMP-CRISPR/Cas12b detection platform. Front Cell Infect Microbiol 2024; 14:1409078. [PMID: 39176261 PMCID: PMC11338869 DOI: 10.3389/fcimb.2024.1409078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Mycoplasma pneumoniae (MP) is the major cause of respiratory infections that threaten the health of children and adolescents worldwide. Therefore, an early, simple, and accurate detection approach for MP is critical to prevent outbreaks of MP-induced community-acquired pneumonia. METHODS Here, we explored a simple and accurate method for MP identification that combines loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12b assay in a one-pot reaction. RESULTS In the current study, the whole reaction was completed within 1 h at a constant temperature of 57°C. The limit of detection of this assay was 33.7 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100%, without any cross-reactivity with other pathogens. Overall, 272 clinical samples were used to evaluate the clinical performance of LAMP-CRISPR/Cas12b. Compared with the gold standard results from real-time PCR, the present method provided a sensitivity of 88.11% (126/143), specificity of 100% (129/129), and consistency of 93.75% (255/272). DISCUSSION Taken together, our preliminary results illustrate that the LAMP-CRISPR/Cas12b method is a simple and reliable tool for MP diagnosis that can be performed in resource-limited regions.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Fuqun Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ying Shi
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Guliya Maimaiti
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhanhua Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhaoyun Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
7
|
Tan M, Liang L, Liao C, Zhou Z, Long S, Yi X, Wang C, Wei C, Cai J, Li X, Wei G. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front Cell Infect Microbiol 2024; 14:1362513. [PMID: 38994004 PMCID: PMC11236598 DOI: 10.3389/fcimb.2024.1362513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/μL and 10 fg/μL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Shaoping Long
- Department of Clinical Laboratory, Baise People's Hospital, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Caiheng Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Jinyuan Cai
- School of Food and Chemical Engineering, Liuzhou Institute of Technology, Guangxi, China
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
8
|
Wang Y, Chen H, Pan Q, Wang J, Jiao X, Zhang Y. Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4). Appl Microbiol Biotechnol 2024; 108:345. [PMID: 38801527 PMCID: PMC11129972 DOI: 10.1007/s00253-024-13191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingyun Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Sen A, Masetty M, Weerakoon S, Morris C, Yadav JS, Apewokin S, Trannguyen J, Broom M, Priye A. Paper-based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens Bioelectron 2024; 257:116292. [PMID: 38653014 DOI: 10.1016/j.bios.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/μL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.
Collapse
Affiliation(s)
- Anindita Sen
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Manaswini Masetty
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Sasanka Weerakoon
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Calum Morris
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Jagjit S Yadav
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Senu Apewokin
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jennifer Trannguyen
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Murray Broom
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand.
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA; Digital Futures, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
10
|
Liu Y, Chao Z, Ding W, Fang T, Gu X, Xue M, Wang W, Han R, Sun W. A multiplex RPA-CRISPR/Cas12a-based POCT technique and its application in human papillomavirus (HPV) typing assay. Cell Mol Biol Lett 2024; 29:34. [PMID: 38459454 PMCID: PMC10921630 DOI: 10.1186/s11658-024-00548-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the primary and initiating factor for cervical cancer. With over 200 identified HPV types, including 14 high-risk types that integrate into the host cervical epithelial cell DNA, early determination of HPV infection type is crucial for effective risk stratification and management. Presently, on-site immediate testing during the HPV screening stage, known as Point of Care Testing (POCT), remains immature, severely limiting the scope and scenarios of HPV screening. This study, guided by the genomic sequence patterns of HPV, established a multiplex recombinase polymerase amplification (RPA) technology based on the concept of "universal primers." This approach achieved the multiple amplification of RPA, coupled with the CRISPR/Cas12a system serving as a medium for signal amplification and conversion. The study successfully constructed a POCT combined detection system, denoted as H-MRC12a (HPV-Multiple RPA-CRISPR/Cas12a), and applied it to high-risk HPV typing detection. The system accomplished the typing detection of six high-risk HPV types (16, 18, 31, 33, 35, and 45) can be completed within 40 min, and the entire process, from sample loading to result interpretation, can be accomplished within 45 min, with a detection depth reaching 1 copy/μL for each high-risk type. Validation of the H-MRC12a detection system's reproducibility and specificity was further conducted through QPCR on 34 clinical samples. Additionally, this study explored and optimized the multiplex RPA amplification system and CRISPR system at the molecular mechanism level. Furthermore, the primer design strategy developed in this study offers the potential to enhance the throughput of H-MRC12a detection while ensuring sensitivity, providing a novel research avenue for high-throughput detection in Point-of-Care molecular pathogen studies.
Collapse
Affiliation(s)
- Yan Liu
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Zhujun Chao
- Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Wei Ding
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Tanfeng Fang
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Xinxian Gu
- Dushu Lake Hospital, Affiliated to Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Man Xue
- Biological Products and Biochemical Drugs, Suzhou Institute for Food and Drug Control, Suzhou, 215101, Jiangsu, People's Republic of China
| | - Wei Wang
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Rong Han
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Wanping Sun
- Laboratory of Molecular Diagnostics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Wang R, Mao X, Xu J, Yao P, Jiang J, Li Q, Wang F. Engineering of the LAMP-CRISPR/Cas12b platform for Chlamydia psittaci detection. J Med Microbiol 2023; 72. [PMID: 38054656 DOI: 10.1099/jmm.0.001781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Introduction. Chlamydia psittaci (C. psittaci) is a zoonotic infection, that causes psittacosis (parrot fever) in humans, leading to severe clinical manifestations, including severe pneumonia, adult respiratory distress syndrome, and, in rare cases, death.Gap Statement. Rapid, sensitive and specific detection of C. psittaci facilitates timely diagnosis and treatment of patients.Aim. This study aimed to engineer the LAMP-CRISPR/Cas12b platform for C. psittaci detection.Methodology. The loop-mediated isothermal amplification (LAMP) technique and clustered regularly interspaced short palindromic repeats-CRISPR associated protein 12b (CRISPR-Cas12b) assay were combined to establish two-step and one-tube LAMP-CRISPR/Cas12b reaction systems, respectively, for rapidly detecting C. psittaci.Results. The two-step and one-tube LAMP-CRISPR/Cas12b assay could complete detection within 1 h. No cross-reactivity was observed from non-C. psittaci templates with specific LAMP amplification primers and single-guide RNA (sgRNA) targeting the highly conserved short fragment CPSIT_0429 gene of C. psittaci. The detection limits of the two-step and one-tube LAMP-CRISPR/Cas12b reaction were 102 aM and 103 aM, respectively. The results were consistent with qPCR for nucleic acid detection in 160 clinical samples, including 80 suspected C. psittaci samples, kept in the laboratory.Conclusions. The LAMP-CRISPR/Cas12b assay developed in this study provides a sensitive and specific method for rapidly detecting C. psittaci and offers technical support for its rapid diagnosis.
Collapse
Affiliation(s)
- Rong Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Fengming Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| |
Collapse
|
12
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
13
|
Sun K, Liu Y, Zhao W, Ma B, Zhang M, Yu X, Ye Z. Prokaryotic Argonaute Proteins: A New Frontier in Point-of-Care Viral Diagnostics. Int J Mol Sci 2023; 24:14987. [PMID: 37834437 PMCID: PMC10573157 DOI: 10.3390/ijms241914987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The recent pandemic of SARS-CoV-2 has underscored the critical need for rapid and precise viral detection technologies. Point-of-care (POC) technologies, which offer immediate and accurate testing at or near the site of patient care, have become a cornerstone of modern medicine. Prokaryotic Argonaute proteins (pAgo), proficient in recognizing target RNA or DNA with complementary sequences, have emerged as potential game-changers. pAgo present several advantages over the currently popular CRISPR/Cas systems-based POC diagnostics, including the absence of a PAM sequence requirement, the use of shorter nucleic acid molecules as guides, and a smaller protein size. This review provides a comprehensive overview of pAgo protein detection platforms and critically assesses their potential in the field of viral POC diagnostics. The objective is to catalyze further research and innovation in pAgo nucleic acid detection and diagnostics, ultimately facilitating the creation of enhanced diagnostic tools for clinic viral infections in POC settings.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.S.); (Y.L.); (W.Z.); (B.M.); (M.Z.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.S.); (Y.L.); (W.Z.); (B.M.); (M.Z.)
| |
Collapse
|
14
|
Qian Y, Zhou D, Li M, Zhao Y, Liu H, Yang L, Ying Z, Huang G. Application of CRISPR-Cas system in the diagnosis and therapy of ESKAPE infections. Front Cell Infect Microbiol 2023; 13:1223696. [PMID: 37662004 PMCID: PMC10470840 DOI: 10.3389/fcimb.2023.1223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Antimicrobial-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. ESKAPE pathogens are the most common opportunistic pathogens in nosocomial infections, and a considerable number of their clinical isolates are not susceptible to conventional antimicrobial therapy. Therefore, innovative therapeutic strategies that can effectively deal with ESKAPE pathogens will bring huge social and economic benefits and ease the suffering of tens of thousands of patients. Among these strategies, CRISPR (clustered regularly interspaced short palindromic repeats) system has received extra attention due to its high specificity. Regrettably, there is currently no direct CRISPR-system-based anti-infective treatment. This paper reviews the applications of CRISPR-Cas system in the study of ESKAPE pathogens, aiming to provide directions for the research of ideal new drugs and provide a reference for solving a series of problems caused by multidrug-resistant bacteria (MDR) in the post-antibiotic era. However, most research is still far from clinical application.
Collapse
Affiliation(s)
- Yizheng Qian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn Plastic and Wound Repair Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Min Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yongxiang Zhao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Huanhuan Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Li Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhiqin Ying
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
15
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Hao J, Xie L, Yang T, Huo Z, Liu G, Liu Y, Xiong W, Zeng Z. Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-Cas12a system coupled with recombinase polymerase amplification. Talanta 2023; 255:124220. [PMID: 36621165 DOI: 10.1016/j.talanta.2022.124220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Pasteurella multocida (P. multocida) is an important pathogenic bacterium that poses a serious threat to the development of the livestock economy and human health. Currently, the existing methods for P. multocida detection are time-consuming and require complex professional operations, limiting the application of field detection. In the study, we presented a single-pot naked-eye CRISPR-Cas12a platform (Cas12a-NEye) for the detection of P. multocida. The round tube cover allowed more Cas12a detection solution to be temporarily stored than the flat cap, enabling single-pot assays and avoiding aerosol contamination. The positive samples generated obvious red using naked eye using no excitation light and the negative samples generated blue. The limit of detection (LOD) was a single copy, without cross-reactivity with other closely related bacteria. Furthermore, we validated this platform using 16 P. multocida clinical lung samples and obtained consistent results with the real-time quantitative polymerase chain reaction (qPCR) method. The entire experimental process included rapid DNA extraction (<1 h) and Cas12a-NEye assay (25 min), which was accomplished within 1.5 h. Thus, this "sample-to-answer" platform has significant potential for P. multocida detection.
Collapse
Affiliation(s)
- Jie Hao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China
| | - Tianmu Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China
| | - Zhipeng Huo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China
| | - Guifang Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China
| | - Yahong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China; National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China; National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou 510642, China.
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, 510642, China; National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Qiu X, Liu X, Wang R, Ma X, Han L, Yao J, Li Z. Accurate, Sensitive, and Rapid Detection of Pseudomonas aeruginosa Based on CRISPR/Cas12b with One Fluid-Handling Step. Microbiol Spectr 2023; 11:e0352322. [PMID: 36622174 PMCID: PMC9927138 DOI: 10.1128/spectrum.03523-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is a major bacterial pathogen causing nosocomial infections and accounts for morbidity and mortality among patients with cystic fibrosis. An accurate, sensitive, and rapid method to detect P. aeruginosa is critical for the early control of infection and patient management. In this study, we established a P. aeruginosa clustered regularly interspaced short palindromic repeats testing in one pot (CRISPR-top) assay which detected P. aeruginosa with one fluid-handling step in one tube. The reaction was performed isothermally within 1 h; thus, specific instruments were not required. The optimal reaction conditions of this assay were determined to be a temperature of 55°C; working concentrations of 1 μM for the forward inner primer and backward inner primer, 0.5 μM for the loop forward primer and loop backward primer, and 0.25 μM for the forward outer primer and backward outer primer; as well as a 2 μM concentration single-stranded DNA reporter molecules. In terms of specificity, our assay showed 100% inclusivity and exclusivity among 48 strains, including 15 P. aeruginosa clinical isolates and 33 non-P. aeruginosa strains. The limit of detection of our method was 10 copies per reaction mixture. Forty-six human sputum specimens from patients with respiratory symptoms were tested. Using the results of quantitative real-time PCR as the gold standard, our method showed 85.3% (29/34) sensitivity, 100% (12/12) specificity, a positive predictive value of 100% (29/29), and a negative predictive value of 70.6% (12/17). In summary, the P. aeruginosa CRISPR-top assay developed in the present study is a high-efficiency alternative tool for the accurate and rapid detection of P. aeruginosa, especially in resource-limited settings. IMPORTANCE This study reports a P. aeruginosa CRISPR-top assay which can precisely identify P. aeruginosa using nucleic acids from pure cultures or clinical samples in one pot with one fluid-handling step. The P. aeruginosa CRISPR-top reaction is suitable for on-site testing, and its diagnostic performance can be compared with that of qPCR.
Collapse
Affiliation(s)
- Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueping Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruixue Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|