1
|
Zhao D, Wu Y, Qu J, Fang L, Liu C, Zhang L, Zhang M, Wang J, Li Z. Complete genome sequence and comparative analysis of Bacillus velezensis Lzh-5, a fungal antagonistic and plant growth-promoting strain. BMC Microbiol 2025; 25:230. [PMID: 40264000 PMCID: PMC12013091 DOI: 10.1186/s12866-025-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Plant diseases significantly and persistently impair product quality and yield across the globe. Employing antagonistic microorganisms represents an environmentally friendly and cost-effective approach to pathogen management. In this study, Bacillus velezensis Lzh-5 was explored to understand the molecular underpinnings of its antagonistic activity and plant growth-promoting properties. RESULTS We present the basic genomic profile of B. velezensis Lzh-5. Whole-genome analysis revealed that Lzh-5 possesses a 4,015,817 bp circular chromosome with a GC content of 46.0%, and an 8,933 bp circular plasmid with a GC content of 40.5%. A total of 3,998 genes were predicted, of which 3,881 (97.07%) are coding DNA sequences (CDSs). Through phylogenomic and comparative genomic analyses, strain Lzh-5 was confirmed as B. velezensis. The Lzh-5 genome harbors genes for cell wall-degrading enzymes. Additionally, 13 gene clusters responsible for secondary metabolite production were identified. Notably, a unique cluster (cluster 2) coding for an unknown compound was found exclusively in strain Lzh-5. Genes associated with plant growth enhancement, such as those involved in chemotaxis, motility, biofilm formation, phytohormone production, nitrogen fixation, phosphate solubilization, glycine betaine biosynthesis, and acetoin and 2,3-butanediol synthesis, were also identified. CONCLUSION The basic characteristics of strain Lzh-5 genome were delineated through whole-genome sequencing. Our analysis indicates that the Lzh-5 genome encompasses various genes that promote plant growth, induce systemic resistance, and antagonize pathogens. Compared to other strains, several unique gene clusters in Lzh-5 may contribute to the discovery of novel bioactive compounds and offer a broader antagonistic spectrum. This investigation elucidates the antifungal and plant growth-promoting mechanisms of B. velezensis Lzh-5 at a genetic level, providing a theoretical foundation for further application in agricultural production.
Collapse
Affiliation(s)
- Dongying Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
- School of Life Sciences, Dezhou University, Dezhou, 253023, P. R. China
| | - Yutong Wu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
| | - Lei Fang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
| | - Chaoyue Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
| | - Lin Zhang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China
| | - Mingshuo Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, P. R. China
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China.
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China.
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P. R. China.
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou, 253023, P. R. China.
| |
Collapse
|
2
|
Wang J, Xie X, Li B, Yang L, Song F, Zhou Y, Jiang M. Complete genome analysis and antimicrobial mechanism of Bacillus velezensis GX0002980 reveals its biocontrol potential against mango anthracnose disease. Microbiol Spectr 2025:e0268524. [PMID: 40237490 DOI: 10.1128/spectrum.02685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Post-harvest anthracnose significantly affects the yield and quality of mangoes. In this study, an antagonist bacterium, GX0002980, with strong inhibitory effect against Colletotrichum gloesporioides, the pathogen of mango anthracnose, was isolated from the rhizosphere soil of plants. Based on morphological characteristics, physiological and biochemical tests, and 16S rRNA gene and gyrB gene sequencing analysis, the strain was identified as Bacillus velezensis. Strain GX0002980 exhibits broad-spectrum antibacterial capabilities, and its volatile substances and sterile fermentation filtrate also demonstrate antagonistic effects against C. gloesporioides. This strain can produce antimicrobial substances that inhibit pathogen growth, such as amylase, cellulase, protease, pectinase, and siderophores, and has plant-growth-promoting characteristics, such as nitrogen fixation, NH3 production, and phosphate solubilization. Whole-genome sequencing results show that the genome size of GX0002980 is 3,907,381 bp with a guanine and cytosine content of 47.44%. The antiSMASH analysis predicts 14 antimicrobial biosynthesis gene clusters within the GX0002980 genome, including surfactin, fengycin, bacilysin, macrolactin H, bacillaene, difficidin, and bacillibactin. Liquid chromatography-mass spectrometry analysis revealed that the antimicrobial active substances secreted by GX0002980 include surfactin, bacilysin, butirosin A, and more. Strain GX0002980 has an in vitro control efficiency of 52% against mango anthracnose, and it can effectively suppress the occurrence of post-harvest diseases in mangoes, extending their storage time. In conclusion, B. velezensis GX0002980 possesses multiple biocontrol mechanisms and has potential for application in the biological control of mango anthracnose.IMPORTANCEBacillus velezensis GX0002980 showed biocontrol potential against Colletotrichum gloesporioides, a causative agent of mango anthracnose. B. velezensis GX0002980 produces a variety of secondary metabolites with antibacterial properties. Whole-genome sequencing revealed potential active metabolite synthesis gene clusters of B. velezensis GX0002980. B. velezensis GX0002980 has a significant effect on the control of post-harvest disease in mango fruits.
Collapse
Affiliation(s)
- Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Xiaoying Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Bo Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Lifang Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Jiang Y, He P, Kong H, He P, Wu Y, Tang G, Tang P, Di Y, Li X, Liu L, Munir S, He Y. Biocontrol Effect of Bacillus velezensis D7-8 on Potato Common Scab and Its Complete Genome Sequence Analysis. Microorganisms 2025; 13:770. [PMID: 40284607 PMCID: PMC12029370 DOI: 10.3390/microorganisms13040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Potato common scab, caused by Streptomyces species, is a widespread soil-borne disease that poses a significant threat to potato cultivation globally. In this study, a Bacillus velezensis D7-8 strain was isolated from a potato. This endophytic bacterium exhibited broad-spectrum antifungal activity, and pot trials demonstrated that the D7-8 strain effectively controlled potato common scab with an efficacy of 42.07%. The complete genome sequence of the D7-8 strain was sequenced and subsequently identified as B. velezensis through multiple bioinformatic methods, primarily through structural variation analysis of whole-genome sequences. The machine learning method predicted that the expression profiles of colinear genes among closely related Bacillus species were highly consistent. Metabolite analysis of crude extracts using ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive HRMS) revealed that D7-8 produces bioactive compounds, including surfactin and fengycin, both known for their antimicrobial properties. This study elucidates the antagonistic effect of B. velezensis D7-8 against Streptomyces acidiscabies and provides a valuable reference for future research on accurate microbial identification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Gayathri M, Sharanya R, Renukadevi P, Malathi VG, Ghosh A, Nallusamy S, Varanavasiappan S, Nakkeeran S, Alkahtani S. Genomic configuration of Bacillus subtilis (NMB01) unveils its antiviral activity against Orthotospovirus arachinecrosis infecting tomato. FRONTIERS IN PLANT SCIENCE 2025; 16:1517157. [PMID: 40104030 PMCID: PMC11913681 DOI: 10.3389/fpls.2025.1517157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Orthotospovirus arachinecrosis (groundnut bud necrosis virus, GBNV) infecting tomato is a devastating viral pathogen responsible for severe yield losses of up to 100%. Considering the significance of the plant growth-promoting bacteria to induce innate immunity, attempts were made to evaluate the antiviral efficacy of Bacillus subtilis NMB01 against GBNV in cowpea and tomato. Foliar application of B. subtilis NMB01 at 1.5% onto the leaves of cowpea and tomato followed by challenge inoculation with GBNV significantly reduced the incidence of GBNV from 80% to 90% in response to the untreated inoculated control. Hence, we had a quest to understand if any genes were contributing toward the suppression of GBNV in assay hosts. To unveil the secrecy, whole-genome sequencing of B. subtilis NMB01 was carried out. The genome sequence of NMB01 revealed the presence of secondary metabolite biosynthetic gene clusters, including non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) which also encoded bacteriocins and antimicrobial peptides. The pan-genome analysis identified 1,640 core genes, 4,885 dispensable genes, and 60 unique genes, including MAMP genes that induce host immune responses. Comparative genome and proteome analysis with other genomes of B. subtilis strains in a public domain through OrthoVenn analysis revealed the presence of 4,241 proteins, 3,695 clusters, and 655 singletons in our study isolate. Furthermore, the NMB01-treated tomato plants increased the levels of defense-related genes (MAPKK1, WRKY33, PR1, PAL, and NPR1), enhancing immune system priming against GBNV infection. These findings suggest that B. subtilis NMB01 can be used as a promising biological control agent for managing plant viral disease sustainably.
Collapse
Affiliation(s)
- M Gayathri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Sharanya
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - P Renukadevi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Varanavasiappan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Nakkeeran
- Department of Plant Pathology, Agriculture College and Research Institute, Kudumiyanmalai, Pudukottai, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
6
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Zhu Y, Zhou E, Shu C, Cheng B, Liu X, Tang X, Duan L, Ma C, Chen J, Lu W, Yang Y. Biocontrol of Colletotrichum fructicola in the Postharvest Banana Fruit Using the Siderophore-Producing Strain BX1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22132-22143. [PMID: 39316703 DOI: 10.1021/acs.jafc.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Banana anthracnose, caused by Colletotrichum fructicola, significantly reduced the postharvest fruit quality. Employing biocontrol strategies offers a sustainable approach to enhance agricultural practices. The Burkholderia sp. strain BX1 hinders the growth and appressorium formation of C. fructicola, and its sterile filtrate lowers the anthracnose incidence while preserving the fruit quality. Scanning electron microscopy and genomic analyses confirmed BX1 as Burkholderia pyrrocinia. AntiSMASH analysis identified three siderophores with high similarity, and improved MALDI-TOF IMS confirmed the presence of the siderophore pyochelin. Furthermore, the BX1 filtrate suppressed the expression of virulence genes in C. fructicola and induced the expression of disease resistance genes in banana. However, the presence of 80 μM iron ions notably mitigated BX1's inhibitory effects and reversed the changes in related gene expression. These results underscore BX1's robust efficacy as a biocontrol agent in managing banana anthracnose, highlight the effective antifungal compounds, and elucidate the influence of environmental factors on biocontrol effectiveness.
Collapse
Affiliation(s)
- Yiming Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region/School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Canwei Shu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Baoping Cheng
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangzhou 510640, China
| | - Xiaoxue Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolin Tang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lingtao Duan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region/School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region/School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
8
|
Fotoohiyan Z, Samiei F, Sardoei AS, Kashi F, Ghorbanpour M, Kariman K. Improved salinity tolerance in cucumber seedlings inoculated with halotolerant bacterial isolates with plant growth-promoting properties. BMC PLANT BIOLOGY 2024; 24:821. [PMID: 39218905 PMCID: PMC11367809 DOI: 10.1186/s12870-024-05538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
To address salinity stress in plants in an eco-friendly manner, this study investigated the potential effects of salinity-resistant bacteria isolated from saline agricultural soils on the growth of cucumber (Cucumis sativus, cv. Royal) seedlings. A greenhouse factorial experiment was conducted based on a completely randomized design (CRD) with two factors, salinity at four levels and five bacterial treatments, with three replications (n = 3). Initially, fifty bacterial isolates were screened for their salinity and drought tolerance, phosphate solubilization activity, along with production of auxin, siderophore and hydrogen cyanide. Isolates K4, K14, K15, and C8 exhibited the highest resistance to salinity and drought stresses in vitro. Isolates C8 and K15 demonstrated the highest auxin production capacity, generating 2.95 and 2.87 µg mL- 1, respectively, and also exhibited significant siderophore production capacities (by 14% and 11%). Additionally, isolates C8 and K14 displayed greater phosphate solubilization activities, by 184.64 and 122.11 µg mL- 1, respectively. The statistical analysis revealed that the selected four potent isolates significantly enhanced all growth parameters of cucumber plants grown under salinity stress conditions for six weeks. Plant height increased by 41%, fresh and dry weights by 35% and 7%, respectively, and the leaf area index by 85%. The most effective isolate, C8, was identified as Bacillus subtilis based on the 16 S rDNA amplicon sequencing. This study demonstrated that inoculating cucumber seedlings with halotolerant bacterial isolates, such as C8 (Bacillus subtilis), possessing substantial plant growth-promoting properties significantly alleviated salinity stress by enhancing plant growth parameters. These findings suggest a promising eco-friendly strategy for improving crop productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Zeinab Fotoohiyan
- Department of Plant Pathology, Jiroft Branch, Islamic Azad University, Kerman, Iran
| | - Fatemeh Samiei
- Department of Plant Pathology, Roudehen Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salehi Sardoei
- Department of Horticultural and Crops Research, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Fatemeh Kashi
- Graduated with a master's degree in statistics from Allameh Tabataba'i University, Tehran, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
9
|
Wang W, Chen X, Ma J, Li W, Long Y. Activity of Streptomyces globosus OPF-9 against the important pathogen Alternaria longipes and biocontrol mechanisms revealed by multi-omic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106094. [PMID: 39277405 DOI: 10.1016/j.pestbp.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xuetang Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiling Ma
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
10
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
11
|
Chang X, Yun L, Liu Z, Shen Y, Feng S, Yang G, Meng X. Antagonistic Effects and the Underlying Mechanisms of Bacillus velezensis and its Antibacterial Peptide LCI Against Aeromonas hydrophila Infection in Largemouth Bass. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10329-w. [PMID: 39073749 DOI: 10.1007/s12602-024-10329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Aeromonas hydrophila is one of the most prevalent pathogenic bacteria in largemouth bass. The use of antibiotics to inhibit A. hydrophila poses a significant threat to fish and environmental safety. Bacillus velezensis, a safe bacterium with probiotic and antibacterial characteristics, is an ideal candidate for antagonizing A. hydrophila. This study explored the antagonistic effects of B. velezensis FLU-1 on A. hydrophila in vivo and in vitro. In addition, we explored the antimicrobial peptides (AMPs) produced by strain FLU-1 and clarified the underlying antibacterial mechanisms. The results showed that strain FLU-1 could inhibit a variety of fish pathogens, including A. hydrophila. The challenge test showed that dietary supplementation with B. velezensis FLU-1 significantly improved the survival rate of largemouth bass and reduced the bacterial load in liver. Subsequently, the AMP LCI was isolated from B. velezensis FLU-1 and was found to be effective against A. hydrophila in vitro and in vivo. Transcriptomic analysis revealed that LCI downregulated the genes associated with flagellar assembly and peptidoglycan synthesis in A. hydrophila. Phenotypic test results showed that LCI disrupted the membrane integrity, markedly reduced the biofilm biomass and diminished the swimming motility of A. hydrophila. Furthermore, the results showed that LCI bound to the genomic DNA of A. hydrophila and destroyed the DNA structures. Overall, these findings elucidated the mechanism of action of LCI against A. hydrophila at the phenotypic and physiological levels. This study suggests that B. velezensis FLU-1 and its AMP LCI could serve as antibiotic alternatives for controlling pathogens in aquaculture.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhikun Liu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
12
|
Ananev AA, Ogneva ZV, Nityagovsky NN, Suprun AR, Kiselev KV, Aleynova OA. Whole Genome Sequencing of Bacillus velezensis AMR25, an Effective Antagonist Strain against Plant Pathogens. Microorganisms 2024; 12:1533. [PMID: 39203375 PMCID: PMC11356610 DOI: 10.3390/microorganisms12081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is "gray mold", caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus halotolerans, Bacillus amyloliquefaciens, and Bacillus velezensis, are known to be active against major post-harvest plant rots. In this study, we showed that the endophytic bacteria B. velezensis strain AMR25 isolated from the leaves of wild grapes Vitis amurensis Rupr. exhibited antimicrobial activity against grape pathogens, including B. cinerea. The genome of B. velezensis AMR25 has one circular chromosome with a length of 3,909,646 bp. with 3689 open reading frames. Genomic analysis identified ten gene clusters involved in the nonribosomal synthesis of polyketides (macrolactin, bacillene, and difficidin), lipopeptides (surfactin, fengycin, and bacillizin), and bacteriocins (difficidin). Also, the genome under study contains a number of genes involved in root colonization, biofilm formation, and biosynthesis of phytohormones. Thus, the endophytic bacteria B. velezensis strain AMR25 shows great promise in developing innovative biological products for enhancing plant resistance against various pathogens.
Collapse
Affiliation(s)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.A.A.); (N.N.N.); (A.R.S.); (K.V.K.); (O.A.A.)
| | | | | | | | | |
Collapse
|
13
|
Mian S, Machado ACZ, Hoshino RT, Mosela M, Higashi AY, Shimizu GD, Teixeira GM, Nogueira AF, Giacomin RM, Ribeiro LAB, Koltun A, de Assis R, Gonçalves LSA. Complete genome sequence of Bacillus velezensis strain Ag109, a biocontrol agent against plant-parasitic nematodes and Sclerotinia sclerotiorum. BMC Microbiol 2024; 24:194. [PMID: 38849775 PMCID: PMC11157790 DOI: 10.1186/s12866-024-03282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.
Collapse
Affiliation(s)
- Silas Mian
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Rodrigo Thibes Hoshino
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Mirela Mosela
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Allan Yukio Higashi
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gabriel Danilo Shimizu
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gustavo Manoel Teixeira
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Renata Mussoi Giacomin
- Biology Department, Universidade Estadual Do Centro Oeste, Guarapuava, Paraná, 85015-430, Brazil
| | | | - Alessandra Koltun
- Center for Molecular Biology and Genetic Engineering, UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Rafael de Assis
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | |
Collapse
|
14
|
Cheng C, Su S, Bo S, Zheng C, Liu C, Zhang L, Xu S, Wang X, Gao P, Fan K, He Y, Zhou D, Gong Y, Zhong G, Liu Z. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties. Sci Rep 2024; 14:12950. [PMID: 38839805 PMCID: PMC11153497 DOI: 10.1038/s41598-024-63756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China.
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, 010000, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Chengzhong Zheng
- Ulanqab Institute for Agricultural and Forestry Science, Ulanqab, 012000, China
| | - Chunfang Liu
- Ulanqab Center for Disease Control and Prevention, Ulanqab, 012000, China
| | - Linchong Zhang
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, 010000, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Xiaoyun Wang
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Ulanqab, 012000, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Di Zhou
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Zhiguo Liu
- Inner Mongolia Agricultural University, Hohhot, 010000, China.
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 100000, China.
| |
Collapse
|
15
|
Han KI, Nam YH, Hwang BS, Kim JT, Jung JO, Kim E, Lee MH. Characterization of Bacillus velezensis TJS119 and its biocontrol potential against insect pathogens. Front Microbiol 2024; 15:1361961. [PMID: 38784813 PMCID: PMC11111924 DOI: 10.3389/fmicb.2024.1361961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The white-spotted flower chafer (Protaetia brevitarsis seulensis), which is widely distributed in Asian countries, is traditionally used in oriental medicine. However, its larvae are prone to severe damage by green muscardine disease (caused by Metarhizium anisopliae) during breeding. The aim of this study was to characterize Bacillus velezensis TJS119, which has been isolated from freshwater, and investigate its potential as a biocontrol agent against M. anisopliae in insects. Methods TJS119 was obtained from freshwater samples in the Republic of Korea and was classified as B. velezensis. We evaluated its in vitro antifungal effect, sequenced the bacterial whole genome, mined genes responsible for the synthesis of secondary metabolites, performed secondary metabolite analysis Ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS), and conducted bioassays for determining green muscardine disease control ability. Results Bacillus velezensis TJS119 inhibited the mycelial growth of M. anisopliae in vitro. The size of the B. velezensis TJS119 genome was estimated to be 3,890,913 bp with a GC content of 46.67% and 3,750 coding sequences. Biosynthetic gene clusters for secondary metabolites with antifungal activity were identified in the genome. Lipopeptides, including fengycin secreted by TJS119 exhibit antifungal activity. Application of TJS119 for the biocontrol against green muscardine disease increased the viability of white-spotted flower chafer by 94.7% compared to the control. Discussion These results indicate that B. velezensis TJS119 is a potential biocontrol agent for insect pathogens.
Collapse
Affiliation(s)
- Kook-Il Han
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Young Ho Nam
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Byung Su Hwang
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Jeong Tae Kim
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Jum Oc Jung
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| | - Eunsun Kim
- Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, Republic of Korea
| | - Mi-Hwa Lee
- Using Technology Development Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Republic of Korea
| |
Collapse
|
16
|
Li W, Sun L, Wu H, Gu W, Lu Y, Liu C, Zhang J, Li W, Zhou C, Geng H, Li Y, Peng H, Shi C, Wang D, Peng G. Bacillus velezensis YXDHD1-7 Prevents Early Blight Disease by Promoting Growth and Enhancing Defense Enzyme Activities in Tomato Plants. Microorganisms 2024; 12:921. [PMID: 38792750 PMCID: PMC11124510 DOI: 10.3390/microorganisms12050921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus velezensis is well known as a plant growth-promoting rhizobacteria (PGPR) and biocontrol agent. Nevertheless, there are very few reports on the study of B. velezensis on tomato early blight, especially the biocontrol effects among different inoculation concentrations. In this study, an IAA-producing strain, Bacillus velezensis YXDHD1-7 was isolated from the tomato rhizosphere soil, which had the strongest inhibitory effect against Alternaria solani. Inoculation with bacterial suspensions of this strain promoted the growth of tomato seedlings effectively. Furthermore, inoculations at 106, 107, and 108 cfu/mL resulted in control efficacies of 100%, 83.15%, and 69.90%, respectively. Genome sequencing showed that it possesses 22 gene clusters associated with the synthesis of antimicrobial metabolites and genes that are involved in the production of IAA. Furthermore, it may be able to produce spermidine and volatile compounds that also enhance plant growth and defense responses. Our results suggest that strain YXDHD1-7 prevents early blight disease by promoting growth and enhancing the defense enzyme activities in tomato plants. This strain is a promising candidate for an excellent microbial inoculant that can be used to enhance tomato production.
Collapse
Affiliation(s)
- Wangxi Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Lili Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Hangtao Wu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Jiexin Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Wanling Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Haoyang Geng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Yaying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China; (L.S.); (H.W.); (W.G.); (Y.L.); (C.L.); (J.Z.); (W.L.); (C.Z.); (H.G.); (Y.L.); (H.P.); (C.S.)
| | - Guixiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
17
|
González-León Y, De la Vega-Camarillo E, Ramírez-Vargas R, Anducho-Reyes MA, Mercado-Flores Y. Whole genome analysis of Bacillus velezensis 160, biological control agent of corn head smut. Microbiol Spectr 2024; 12:e0326423. [PMID: 38363138 PMCID: PMC10986511 DOI: 10.1128/spectrum.03264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Corn head smut is a disease caused by the fungus Sporisorium reilianum. This phytosanitary problem has existed for several decades in the Mezquital Valley, an important corn-producing area in central Mexico. To combat the problem, a strain identified as Bacillus subtilis 160 was applied in the field, where it decreased disease incidence and increased crop productivity. In this study, the sequencing and analysis of the whole genome sequence of this strain were carried out to identify its genetic determinants for the production of antimicrobials. The B. subtilis 160 strain was found to be Bacillus velezensis. Its genome has a size of 4,297,348 bp, a GC content of 45.8%, and 4,174 coding sequences. Comparative analysis with the genomes of four other B. velezensis strains showed that they share 2,804 genes and clusters for the production of difficidin, bacillibactin, bacilysin, macrolantin, bacillaene, fengycin, butirosin A, locillomycin, and surfactin. For the latter metabolite, unlike the other strains that have only one cluster, B. velezensis 160 has three. A cluster for synthesizing laterocidine, an antimicrobial reported only in Brevibacillus laterosporus, was also identified. IMPORTANCE In this study, we performed sequencing and analysis of the complete genome of the strain initially identified as Bacillus subtilis 160 as part of its characterization. This bacterium has shown its ability to control corn head smut in the field, a disease caused by the basidiomycete fungus Sporisorium reilianum. Analyzing the complete genome sequence not only provides a more precise taxonomic identification but also sheds light on the genetic potential of this bacterium, especially regarding mechanisms that allow it to exert biological control. Employing molecular and bioinformatics tools in studying the genomes of agriculturally significant microorganisms offers insights into the development of biofungicides and bioinoculants. These innovations aim to enhance plant growth and pave the way for strategies that boost crop productivity.
Collapse
|
18
|
Shi C, Zeng S, Gao X, Hussain M, He M, Niu X, Wei C, Yang R, Lan M, Xie Y, Wang Z, Wu G, Tang P. Complete Genome Sequence Analysis of Bacillus subtilis MC4-2 Strain That against Tobacco Black Shank Disease. Int J Genomics 2024; 2024:8846747. [PMID: 38567257 PMCID: PMC10985647 DOI: 10.1155/2024/8846747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
The MC4-2 bacterium strain was isolated and purified from the Periplaneta americana intestine as a biocontrol agent with good antagonistic effect against the pathogens of a soil-borne disease called tobacco black shank. The MC4-2 strain was found to have good broad-spectrum inhibition by plate stand-off test. Based on 16S rRNA and gyrB genes, ANI analysis, and other comparative genomics methods, it was determined that the MC4-2 strain was Bacillus subtilis. The complete genome sequence showed that the genome size was 4,076,630 bp, the average GC content was 43.78%, and the total number of CDSs was 4,207. Genomic prediction analysis revealed that a total of 145 genes were annotated by the CAZy, containing mainly GH and CE enzymes that break down carbohydrates such as glucose, chitin, starch, and alginate, and a large number of enzymes involved in glycosylation were present. A total of ten secondary metabolite clusters were predicted, six clusters of which were annotated as surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. The present investigation found the biological control mechanism of B. subtilis MC4-2, which provides a strong theoretical basis for the best use of this strain in biological control methods and provides a reference for the subsequent development of agents of this bacterium.
Collapse
Affiliation(s)
- Chunlan Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shuquan Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingchuan He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xurong Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Congcong Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yonghui Xie
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Zhijiang Wang
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
19
|
Kang TA, Lee G, Kim K, Hahn D, Shin JH, Kim WC. Biocontrol of Peach Gummosis by Bacillus velezensis KTA01 and Its Antifungal Mechanism. J Microbiol Biotechnol 2024; 34:296-305. [PMID: 38073404 PMCID: PMC10940740 DOI: 10.4014/jmb.2310.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 03/01/2024]
Abstract
Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.
Collapse
Affiliation(s)
- Tae-An Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kihwan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Patani A, Patel M, Islam S, Yadav VK, Prajapati D, Yadav AN, Sahoo DK, Patel A. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience. World J Microbiol Biotechnol 2024; 40:77. [PMID: 38253986 DOI: 10.1007/s11274-024-03903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The Bacillus genus has emerged as an important player in modern agriculture, revolutionizing plant growth promotion through recent advances. This review provides a comprehensive overview of the critical role Bacillus species play in boosting plant growth and agricultural sustainability. Bacillus genus bacteria benefit plants in a variety of ways, according to new research. Nitrogen fixation, phosphate solubilization, siderophore production, and the production of growth hormones are examples of these. Bacillus species are also well-known for their ability to act as biocontrol agents, reducing phytopathogens and protecting plants from disease. Molecular biology advances have increased our understanding of the complex interplay between Bacillus species and plants, shedding light on the genetic and metabolic underpinnings of these interactions. Furthermore, novel biotechnology techniques have enabled the development of Bacillus-based biofertilizers and biopesticides, providing sustainable alternatives to conventional chemical inputs. Apart from this, the combination of biochar and Bacillus species in current biotechnology is critical for improving soil fertility and encouraging sustainable agriculture through enhanced nutrient retention and plant growth. This review also emphasizes the Bacillus genus bacteria's ability to alleviate environmental abiotic stresses such as drought and salinity, hence contributing to climate-resilient agriculture. Moreover, the authors discuss the challenges and prospects associated with the practical application of Bacillus-based solutions in the field. Finally, recent advances in Bacillus-mediated plant growth promotion highlight their critical significance in sustainable agriculture. Understanding these improvements is critical for realizing the full potential of Bacillus genus microorganisms to address current global food production concerns.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Shaikhul Islam
- Plant Pathology Division, Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. KSG Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| |
Collapse
|
21
|
Valencia-Marin MF, Chávez-Avila S, Guzmán-Guzmán P, Orozco-Mosqueda MDC, de Los Santos-Villalobos S, Glick BR, Santoyo G. Survival strategies of Bacillus spp. in saline soils: Key factors to promote plant growth and health. Biotechnol Adv 2024; 70:108303. [PMID: 38128850 DOI: 10.1016/j.biotechadv.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Soil salinity is one of the most important abiotic factors that affects agricultural production worldwide. Because of saline stress, plants face physiological changes that have negative impacts on the various stages of their development, so the employment of plant growth-promoting bacteria (PGPB) is one effective means to reduce such toxic effects. Bacteria of the Bacillus genus are excellent PGPB and have been extensively studied, but what traits makes them so extraordinary to adapt and survive under harsh situations? In this work we review the Bacillus' innate abilities to survive in saline stressful soils, such as the production osmoprotectant compounds, antioxidant enzymes, exopolysaccharides, and the modification of their membrane lipids. Other survival abilities are also discussed, such as sporulation or a reduced growth state under the scope of a functional interaction in the rhizosphere. Thus, the most recent evidence shows that these saline adaptive activities are important in plant-associated bacteria to potentially protect, direct and indirect plant growth-stimulating activities. Additionally, recent advances on the mechanisms used by Bacillus spp. to improve the growth of plants under saline stress are addressed, including genomic and transcriptomic explorations. Finally, characterization and selection of Bacillus strains with efficient survival strategies are key factors in ameliorating saline problems in agricultural production.
Collapse
Affiliation(s)
- María F Valencia-Marin
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Salvador Chávez-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010 Celaya, Gto, Mexico
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico.
| |
Collapse
|
22
|
Zaid DS, Li W, Yang S, Li Y. Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi. Microbiol Spectr 2023; 11:e0051923. [PMID: 37811935 PMCID: PMC10715170 DOI: 10.1128/spectrum.00519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Collapse
Affiliation(s)
- Doaa S. Zaid
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Desert Research Center, Ain Shams, Egypt
| | - Wenya Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Siyu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
24
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Wang Z, Lu K, Liu X, Zhu Y, Liu C. Comparative Functional Genome Analysis Reveals the Habitat Adaptation and Biocontrol Characteristics of Plant Growth-Promoting Bacteria in NCBI Databases. Microbiol Spectr 2023; 11:e0500722. [PMID: 37098923 PMCID: PMC10269705 DOI: 10.1128/spectrum.05007-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/03/2023] [Indexed: 04/27/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) are a group of beneficial microorganisms that include 60 bacterial genera, such as Bacillus, Pseudomonas, and Burkholderia, which widely colonize plant leaves and soil, promote plant growth, and/or inhibit pathogen infection. However, the genetic factors underpinning adaptation of PGPB to plant leaves and soil remain poorly understood. In this study, we performed a comparative functional genome analysis approach to investigate the functional genes of 195 leaf-associated (LA) and 283 soil-associated (SA) PGPB strains and their roles in adapting to their environment, using 95 strains from other-associated (OA) environmental habitats with growth-promoting or antimicrobial functions as negative controls. Comparison analysis of the enrichment of nonredundant (NR) protein sequence databases showed that cytochrome P450, DNA repair, and motor chemotaxis genes were significantly enriched in LA PGPB strains related to environmental adaptation, while cell wall-degrading enzymes, TetR transcriptional regulatory factors, and sporulation-related genes were highly enriched in SA PGPB strains. Additionally, analysis of carbohydrate-active enzymes demonstrated that glycosyltransferases (GTs) and glycoside hydrolases (GHs) were abundant families in all PGPB strains, which is in favor of plant growth, and enriched in SA PGPB strains. Except for most Bacillus strains, SA PGPB genomes contained significantly more secondary metabolism clusters than LA PGPB. Most LA PGPB contained hormone biosynthesis genes, which may contribute to plant growth promotion, while SA PGPB harbored numerous carbohydrate and antibiotic metabolism genes. In summary, this study further deepens our understanding of the habitat adaptation and biocontrol characteristics of LA and SA PGPB strains. IMPORTANCE Plant growth-promoting bacteria (PGPB) are essential for the effectiveness of biocontrol agents in plant phyllosphere and rhizosphere. However, little is known about the ecological adaptation of PGPB to different habitats. In this study, comparative functional genome analysis of leaf-associated (LA), soil-associated (SA), and other-associated (OA) PGPB strains was performed. We found that genes related to the metabolism of hormones were enriched in LA PGPB. Carbohydrate and antibiotic metabolism genes were enriched in SA PGPB, which likely facilitated their adaptation to the plant growth environment. Our findings provide genetic insights on LA and SA PGPB strains' ecological adaptation and biocontrol characteristics.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Kaiheng Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuping Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Rabbee MF, Baek KH. Detection of Antagonistic Compounds Synthesized by Bacillus velezensis against Xanthomonas citri subsp. citri by Metabolome and RNA Sequencing. Microorganisms 2023; 11:1523. [PMID: 37375024 DOI: 10.3390/microorganisms11061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker disease. When Bv-25 was incubated in Landy broth or yeast nutrient broth (YNB), the ethyl acetate extract of Landy broth exhibited higher levels of antagonistic activity against Xcc compared to that of YNB. Therefore, the antimicrobial compounds in the two ethyl acetate extracts were detected by high performance liquid chromatography-mass spectrometry. This comparison revealed an increase in production of several antimicrobial compounds, including difficidin, surfactin, fengycin, and Iturin-A or bacillomycin-D by incubation in Landy broth. RNA sequencing for the Bv-25 grown in Landy broth were performed, and the differential expressions were detected for the genes encoding the enzymes for the synthesis of antimicrobial compounds, such as bacilysin, plipastatin or fengycin, surfactin, and mycosubtilin. Combination of metabolomics analysis and RNA sequencing strongly suggests that several antagonistic compounds, especially bacilysin produced by B. velezensis, exhibit an antagonistic effect against Xcc.
Collapse
Affiliation(s)
- Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
27
|
Zhou Q, Tu M, Fu X, Chen Y, Wang M, Fang Y, Yan Y, Cheng G, Zhang Y, Zhu Z, Yin K, Xiao Y, Zou L, Chen G. Antagonistic transcriptome profile reveals potential mechanisms of action on Xanthomonas oryzae pv. oryzicola by the cell-free supernatants of Bacillus velezensis 504, a versatile plant probiotic bacterium. Front Cell Infect Microbiol 2023; 13:1175446. [PMID: 37325518 PMCID: PMC10265122 DOI: 10.3389/fcimb.2023.1175446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial leaf streak (BLS) of rice is a severe disease caused by the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) that has gradually become the fourth major disease on rice in some rice-growing regions in southern China. Previously, we isolated a Bacillus velezensis strain 504 that exhibited apparent antagonistic activity against the Xoc wild-type strain RS105, and found that B. velezensis 504 was a potential biocontrol agent for BLS. However, the underlying mechanisms of antagonism and biocontrol are not completely understood. Here we mine the genomic data of B. velezensis 504, and the comparative transcriptomic data of Xoc RS105 treated by the cell-free supernatants (CFSs) of B. velezensis 504 to define differentially expressed genes (DEGs). We show that B. velezensis 504 shares over 89% conserved genes with FZB42 and SQR9, two representative model strains of B. velezensis, but 504 is more closely related to FZB42 than SQR9, as well as B. velezensis 504 possesses the secondary metabolite gene clusters encoding the essential anti-Xoc agents difficidin and bacilysin. We conclude that approximately 77% of Xoc RS105 coding sequences are differentially expressed by the CFSs of B. velezensis 504, which significantly downregulates genes involved in signal transduction, oxidative phosphorylation, transmembrane transport, cell motility, cell division, DNA translation, and five physiological metabolisms, as well as depresses an additional set of virulence-associated genes encoding the type III secretion, type II secretion system, type VI secretion system, type IV pilus, lipopolysaccharides and exopolysaccharides. We also show that B. velezensis 504 is a potential biocontrol agent for bacterial blight of rice exhibiting relative control efficiencies over 70% on two susceptible cultivars, and can efficiently antagonize against some important plant pathogenic fungi including Colletotrichum siamense and C. australisinense that are thought to be the two dominant pathogenic species causing leaf anthracnose of rubber tree in Hainan province of China. B. velezensis 504 also harbors some characteristics of plant growth-promoting rhizobacterium such as secreting protease and siderophore, and stimulating plant growth. This study reveals the potential biocontrol mechanisms of B. velezensis against BLS, and also suggests that B. velezensis 504 is a versatile plant probiotic bacterium.
Collapse
Affiliation(s)
- Qi Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Tu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xue Fu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Xiang D, Yang X, Liu B, Chu Y, Liu S, Li C. Bio-priming of banana tissue culture plantlets with endophytic Bacillus velezensis EB1 to improve Fusarium wilt resistance. Front Microbiol 2023; 14:1146331. [PMID: 37007465 PMCID: PMC10064985 DOI: 10.3389/fmicb.2023.1146331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Tissue culture techniques have been routinely used for banana propagation and offered rapid production of planting materials with favorable genotypes and free of pathogenic microorganisms in the banana industry. Meanwhile, extensive scientific work suggests that micropropagated plantlets are more susceptible to Fusarium oxysporum f. sp. cubense (Foc), the deadly strain that causes Fusarium wilt of bananas than conventional planting material due to the loss of indigenous endophytes. In this study, an endophytic bacterium Bacillus velezensis EB1 was isolated and characterized. EB1 shows remarkable in vitro antagonistic activity against Foc with an inhibition rate of 75.43% and induces significant morphological and ultrastructural changes and alterations in the hyphae of Foc. Colony-forming unit (c.f.u.) counting and scanning electron microscopy (SEM) revealed that EB1 could colonize both the surface and inner tissues of banana tissue culture plantlets. Banana tissue culture plantlets of late rooting stage bioprimed with EB1 could efficiently ward off the invasive of Foc. The bio-priming effect could maintain in the acclimatized banana plants and significantly decrease the disease severity of Fusarium wilt and induce strong disease resistance by manipulating plant defense signaling pathways in a pot experiment. Our results provide the adaptability and potential of native endophyte EB1 in protecting plants from pathogens and infer that banana tissue culture plantlets bio-priming with endophytic microbiota could be a promising biological solution in the fight against the Fusarium wilt of banana.
Collapse
Affiliation(s)
- Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaofang Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bojing Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuanqi Chu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Chunyu Li
| |
Collapse
|
29
|
Ali N, Swarnkar MK, Veer R, Kaushal P, Pati AM. Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron ( Crocus sativus) rhizosphere: A natural -treasure trove of microbial biostimulants. FRONTIERS IN PLANT SCIENCE 2023; 14:1141538. [PMID: 36923125 PMCID: PMC10009223 DOI: 10.3389/fpls.2023.1141538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There is a renewed interest in sustainable agriculture wherein novel plant growth-promoting rhizobacteria (PGPR) are being explored for developing efficient biostimulants. The key requirement of a microbe to qualify as a good candidate for developing a biostimulant is its intrinsic plant growth-promoting (PGP) characteristics. Though numerous studies have been conducted to assess the beneficial effects of PGPRs on plant growth under normal and stressed conditions but not much information is available on the characterization of intrinsic traits of PGPR under stress. Here, we focused on understanding how temperature stress impacts the functionality of key stress tolerant and PGP genes of Bacillus sp. IHBT-705 isolated from the rhizosphere of saffron (Crocus sativus). To undertake the study, Bacillus sp. IHBT-705 was grown under varied temperature regimes, their PGP traits were assessed from very low to very high-temperature range and the expression trend of targeted stress tolerant and PGP genes were analyzed. The results illustrated that Bacillus sp. IHBT-705 is a stress-tolerant PGPR as it survived and multiplied in temperatures ranging from 4°C-50°C, tolerated a wide pH range (5-11), withstood high salinity (8%) and osmolarity (10% PEG). The PGP traits varied under different temperature regimes indicating that temperature influences the functionality of PGP genes. This was further ascertained through whole genome sequencing followed by gene expression analyses wherein certain genes like cspB, cspD, hslO, grpE, rimM, trpA, trpC, trpE, fhuC, fhuD, acrB5 were found to be temperature sensitive while, cold tolerant (nhaX and cspC), heat tolerant (htpX) phosphate solubilization (pstB1), siderophore production (fhuB and fhuG), and root colonization (xerC1 and xerC2) were found to be highly versatile as they could express well both under low and high temperatures. Further, the biostimulant potential was checked through a pot study on rice (Oryza sativa), wherein the application of Bacillus sp. IHBT-705 improved the length of shoots, roots, and number of roots over control. Based on the genetic makeup, stress tolerance potential, retention of PGP traits under stress, and growth-promoting potential, Bacillus sp. IHBT-705 could be considered a good candidate for developing biostimulants.
Collapse
Affiliation(s)
- Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Raj Veer
- Incubatee at Chief Minister Startup Scheme, Shimla, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Complete Genome Sequence of Antibiotic-Producing Bacillus velezensis H208, Isolated from Ginger Rhizosphere in Laifeng County, China. Microbiol Resour Announc 2023; 12:e0055122. [PMID: 36472451 PMCID: PMC9872608 DOI: 10.1128/mra.00551-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genome of an antibiotic-producing bacterium, Bacillus velezensis H208, was sequenced. Strain H208 was isolated from ginger rhizosphere in Laifeng County, China. The genome consisted of 3,929,792 bp, with a GC content of 46.5%, and contained 3,773 protein-coding genes and 118 noncoding RNA genes.
Collapse
|
31
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
32
|
Hu Y, You J, Wang Y, Long Y, Wang S, Pan F, Yu Z. Biocontrol efficacy of Bacillus velezensis strain YS-AT-DS1 against the root-knot nematode Meloidogyne incognita in tomato plants. Front Microbiol 2022; 13:1035748. [PMID: 36483201 PMCID: PMC9722970 DOI: 10.3389/fmicb.2022.1035748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 09/06/2023] Open
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.), one of the most economically important plant-parasitic nematodes (PPNs), cause severe yield and quality losses in agriculture annually. The application of biological control agents is an environmentally safe and effective approach to control RKNs. Here, we report the genomic characteristics of a Bacillus velezensis strain YS-AT-DS1 (Bv-DS1) isolated from the tidal soil, revealing that it has a 4.73 Mb circular chromosome with an average GC-content of 46.43%, 3,977 genes, 86 tRNAs, and 27 rRNAs, and contains secondary metabolite clusters for producing antimicrobial compounds. In vitro assays indicated that Bv-DS1 has not only antagonistic activities against fungal pathogens, but also shows nematicidal activity, with a mortality rate of 71.62% mortality rates in second-stage juvenile (J2s) Meloidogyne incognita. We then focused on the biocontrol efficiency of Bv-DS1 against M. incognita in pot assays. Preinoculation with Bv-DS1 enhanced tomato growth, and significantly reduced the infection rate of J2s, and the number of galls and egg masses on tomato roots. The underlying mechanism in Bv-DS1-induced resistance to M. incognita was further investigated through split-root experiments, and analysing the expression of the genes related to jasmonic acid (JA), salicylic acid (SA), and the tonoplast intrinsic protein (TIP). The results indicated that Bv-DS1 could not activate host systemic-induced resistance (ISR) in the split-root system of tomatoes. Additionally, the expression of JA- (LOX D and MC) and SA- (PAL2 and PR) responsive genes did not change in Bv-DS1-pretreated plants at 3 and 14 days after nematode inoculation. The presented data showed that JA-and SA-dependent pathways were not required for the biocontrol action of the Bv-DS1 against RKN. The TIP genes, responsible for transport of water and small substrates in plants, have previously been shown to negatively regulate the parasitism of PPNs. Surprisingly, Bv-DS1 compromised the downregulation of TIP1.1 and TIP1.3 by M. incognita. Together, our data suggest that Bv-DS1 exhibits a dual effect on plant growth promotion and protection against RKN, possibly related to the regulation of water and solute transport via TIPs. Thus, the Bv-DS1 strain could be used as a biocontrol agent for RKN control in sustainable agriculture.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jia You
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, China
| | - Yu Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yong Long
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siru Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
33
|
Tian L, Hu S, Wang X, Guo Y, Huang L, Wang L, Li W. Antagonism of Rhizosphere Streptomyces yangpuensis CM253 against the Pathogenic Fungi Causing Corm Rot in Saffron ( Crocus sativus L.). Pathogens 2022; 11:1195. [PMID: 36297252 PMCID: PMC9607649 DOI: 10.3390/pathogens11101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Plant diseases lead to a significant decline in the output and quality of Chinese herbal medicines. Actinomycetes play a vital role in the rhizosphere ecosystem. This is especially true for Streptomyces, which have become a valuable biological control resource because of their advantages in producing various secondary metabolites with novel structures and remarkable biological activities. The purpose of this study was to isolate an effective antagonistic actinomycete against the pathogen of corm rot in saffron. An antagonistic actinomycete, CM253, was screened from the rhizosphere soil samples of Crocus sativus, by plate co-culture with four pathogenic fungi (Fusarium oxysporum, Fusarium solani, Penicillium citreosulfuratum, and Penicillium citrinum). CM253 inhibited the growth and development of F. oxysporum hyphae by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, by analyzing the degrading enzyme, the growth-promoting performance, and the whole genome of strain CM253, it was identified as Streptomyces yangpuensis, which produces NH3, protease, glucanase, cellulase, IAA, and ACC deaminase. In addition, 24 secondary metabolite synthesis gene clusters were predicted in antiSMASH. We identified genes encoding 2,3-butanediol; methionine; isoprene (metH, mmuM, ispEFH, gcpE, idi, and ilvABCDEH); biofilm formation; and colonization (upp, rfbBC, efp, aftA, pssA, pilD, fliA, and dhaM). Above all, S. yangpuensis CM253 showed the potential for future development as a biocontrol agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wankui Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
34
|
Mosela M, Andrade G, Massucato LR, de Araújo Almeida SR, Nogueira AF, de Lima Filho RB, Zeffa DM, Mian S, Higashi AY, Shimizu GD, Teixeira GM, Branco KS, Faria MV, Giacomin RM, Scapim CA, Gonçalves LSA. Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Sci Rep 2022; 12:15284. [PMID: 36088482 PMCID: PMC9464197 DOI: 10.1038/s41598-022-19515-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Soybean and maize are some of the main drivers of Brazilian agribusiness. However, biotic and abiotic factors are of great concern, causing huge grain yield and quality losses. Phosphorus (P) deficiency is important among the abiotic factors because most Brazilian soils have a highly P-fixing nature. Thus, large amounts of phosphate fertilizers are regularly applied to overcome the rapid precipitation of P. Searching for alternatives to improve the use of P by crops is essential to reduce the demand for P input. The use of multifunctional rhizobacteria can be considered one of these alternatives. In this sense, the objective of the present work was to select and validate bacterial strains with triple action (plant growth promoter, phosphate solubilizer, and biocontrol agent) in maize and soybean, aiming to develop a multifunctional microbial inoculant for Brazilian agriculture. Bacterial strains with high indole acetic acid (IAA) production, phosphate solubilization, and antifungal activity against soil pathogenic fungi (Rhizoctonia solani, Macrophomina phaseolina, and Fusarium solani) were selected from the maize rhizosphere. Then, they were evaluated as growth promoters in maize under greenhouse conditions. Based on this study, strain 03 (Ag75) was selected due to its high potential for increasing biomass (root and shoot) and shoot P content in maize. This strain was identified through genomic sequencing as Bacillus velezensis. In field experiments, the inoculation of this bacterium increased maize and soybean yields by 17.8 and 26.5%, respectively, compared to the control (25 kg P2O5). In addition, the inoculation results did not differ from the control with 84 kg P2O5, indicating that it is possible to reduce the application of phosphate in these crops. Thus, the Ag75 strain has great potential for developing a multifunctional microbial inoculant that combines the ability to solubilize phosphate, promote plant growth, and be a biocontrol agent for several phytopathogenic fungi.
Collapse
|
35
|
Islam T, Rabbee MF, Choi J, Baek KH. Biosynthesis, Molecular Regulation, and Application of Bacilysin Produced by Bacillus Species. Metabolites 2022; 12:397. [PMID: 35629901 PMCID: PMC9147277 DOI: 10.3390/metabo12050397] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes produce a diverse range of secondary metabolites in response to various environmental factors and interspecies competition. This enables them to become superior in a particular environment. Bacilysin, a dipeptide antibiotic produced by Bacillus species, is active against a broad range of microorganisms. Because of its simple structure and excellent mode of action, i.e., through the inhibition of glucosamine 6-phosphate synthase, it has drawn the attention of researchers. In addition, it acts as a pleiotropic signaling molecule that affects different cellular activities. However, all Bacillus species are not capable of producing bacilysin. The biosynthesis of bacilysin by Bacillus species is not uniform throughout the population; specificity and heterogeneity at both the strain and species levels has been observed. This review discusses how bacilysin is biosynthesized by Bacillus species, the regulators of its biosynthesis, its importance in the host, and the abiotic factors affecting bacilysin production.
Collapse
Affiliation(s)
| | | | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (T.I.); (M.F.R.); (J.C.)
| |
Collapse
|