1
|
Rodriguez-Grande J, Ortiz Y, Garcia-Lopez D, Garcillán-Barcia MP, de la Cruz F, Fernandez-Lopez R. Encounter rates and engagement times limit the transmission of conjugative plasmids. PLoS Genet 2025; 21:e1011560. [PMID: 39919124 PMCID: PMC11828410 DOI: 10.1371/journal.pgen.1011560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/14/2025] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
Plasmid conjugation is a major route for the dissemination of antibiotic resistances and adaptive genes among bacterial populations. Obtaining precise conjugation rates is thus key to understanding how antibiotic resistances spread. Plasmid conjugation is typically modeled as a density-dependent process, where the formation of new transconjugants depends on the rate of encounters between donor and receptor cells. By analyzing conjugation dynamics at different cell concentrations, here we show that this assumption only holds at very low bacterial densities. At higher cell concentrations, conjugation becomes limited by the engagement time, the interval required between two successful matings. Plasmid conjugation therefore follows a Holling´s Type II functional response, characterized by the encounter rate and the engagement time, which represent, respectively, the density and frequency-dependent limits of plasmid transmission. Our results demonstrate that these parameters are characteristic of the transfer machinery, rather than the entire plasmid genome, and that they are robust to environmental and transcriptional perturbation. Precise parameterization of plasmid conjugation will contribute to better understanding the propagation dynamics of antimicrobial resistances.
Collapse
Affiliation(s)
- Jorge Rodriguez-Grande
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Yelina Ortiz
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Daniel Garcia-Lopez
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Raul Fernandez-Lopez
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| |
Collapse
|
2
|
Derollez E, Lesterlin C, Bigot S. Design, potential and limitations of conjugation-based antibacterial strategies. Microb Biotechnol 2024; 17:e70050. [PMID: 39548711 PMCID: PMC11568246 DOI: 10.1111/1751-7915.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past few decades, the global spread of antimicrobial resistance has underscored the urgent need to develop innovative non-antibiotic antibacterial strategies and to reduce antibiotic use worldwide. In response to this challenge, several methods have been developed that rely on gene transfer by conjugation to deliver toxic compounds or CRISPR systems specifically designed to kill or resensitize target bacterial strains to antibiotics. This review explores the design, potential, and limitations of these conjugation-based antibacterial strategies, focusing on the recent advances in the delivery of CRISPR systems as antibacterial effectors.
Collapse
Affiliation(s)
- Elisabeth Derollez
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| |
Collapse
|
3
|
Floras F, Mawere C, Singh M, Wootton V, Hamstead L, McVicker G, Leo JC. The Putative Virulence Plasmid pYR4 of the Fish Pathogen Yersinia ruckeri Is Conjugative and Stabilized by a HigBA Toxin-Antitoxin System. BIOLOGY 2024; 13:652. [PMID: 39336081 PMCID: PMC11429247 DOI: 10.3390/biology13090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
The bacterium Yersinia ruckeri causes enteric redmouth disease in salmonids and hence has substantial economic implications for the farmed fish industry. The Norwegian Y. ruckeri outbreak isolate NVH_3758 carries a relatively uncharacterized plasmid, pYR4, which encodes both type 4 pili and a type 4 secretion system. In this study, we demonstrate that pYR4 does not impose a growth burden on the Y. ruckeri host bacterium, nor does the plasmid contribute to twitching motility (an indicator of type 4 pilus function) or virulence in a Galleria mellonella larval model of infection. However, we show that pYR4 is conjugative. We also reveal, through mutagenesis, that pYR4 encodes a functional post-segregational killing system, HigBA, that is responsible for plasmid maintenance within Y. ruckeri. This is the first toxin-antitoxin system to be characterized for this organism. Whilst further work is needed to elucidate the virulence role of pYR4 and whether it contributes to bacterial disease under non-laboratory conditions, our results suggest that the plasmid possesses substantial stability and transfer mechanisms that imply importance within the organism. These results add to our understanding of the mobile genetic elements and evolutionary trajectory of Y. ruckeri as an important commercial pathogen, with consequences for human food production.
Collapse
Affiliation(s)
- Fisentzos Floras
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Chantell Mawere
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Manvir Singh
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Victoria Wootton
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luke Hamstead
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Gareth McVicker
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Jack C Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| |
Collapse
|
4
|
Fraikin N, Couturier A, Lesterlin C. The winding journey of conjugative plasmids toward a novel host cell. Curr Opin Microbiol 2024; 78:102449. [PMID: 38432159 DOI: 10.1016/j.mib.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Horizontal transfer of plasmids by conjugation is a fundamental mechanism driving the widespread dissemination of drug resistance among bacterial populations. The successful colonization of a new host cell necessitates the plasmid to navigate through a series of sequential steps, each dependent on specific plasmid or host factors. This review explores recent advancements in comprehending the cellular and molecular mechanisms that govern plasmid transmission, establishment, and long-term maintenance. Adopting a plasmid-centric perspective, we describe the critical steps and bottlenecks in the plasmid's journey toward a new host cell, encompassing exploration and contact initiation, invasion, establishment and control, and assimilation.
Collapse
Affiliation(s)
- Nathan Fraikin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Agathe Couturier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France.
| |
Collapse
|
5
|
Hamilton T, Joris BR, Shrestha A, Browne TS, Rodrigue S, Karas BJ, Gloor GB, Edgell DR. De Novo Synthesis of a Conjugative System from Human Gut Metagenomic Data for Targeted Delivery of Cas9 Antimicrobials. ACS Synth Biol 2023; 12:3578-3590. [PMID: 38049144 PMCID: PMC10729033 DOI: 10.1021/acssynbio.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.
Collapse
Affiliation(s)
- Thomas
A. Hamilton
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Benjamin R. Joris
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Arina Shrestha
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Tyler S. Browne
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Sébastien Rodrigue
- Départment
de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Gregory B. Gloor
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - David R. Edgell
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| |
Collapse
|
6
|
Allard N, Collette A, Paquette J, Rodrigue S, Côté JP. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun Biol 2023; 6:1172. [PMID: 37973843 PMCID: PMC10654706 DOI: 10.1038/s42003-023-05534-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial conjugation is a major horizontal gene transfer mechanism. While the functions encoded by many conjugative plasmids have been intensively studied, the contribution of recipient chromosome-encoded genes remains largely unknown. Here, we analyzed the genetic requirement of recipient cells for conjugation of IncI2 plasmid TP114, which was recently shown to transfer at high rates in the gut microbiota. We performed transfer assays with ~4,000 single-gene deletion mutants of Escherichia coli. When conjugation occurs on a solid medium, we observed that recipient genes impairing transfer rates were not associated with a specific cellular function. Conversely, transfer assays performed in broth were largely dependent on the lipopolysaccharide biosynthesis pathway. We further identified specific structures in lipopolysaccharides used as recipient cell surface receptors by PilV adhesins associated with the type IVb accessory pilus of TP114. Our strategy is applicable to study other mobile genetic elements and understand important host cell factors for their dissemination.
Collapse
Affiliation(s)
- Nancy Allard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Arianne Collette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Josianne Paquette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - Jean-Philippe Côté
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
7
|
Milman O, Yelin I, Kishony R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res 2023; 51:553-573. [PMID: 36617974 PMCID: PMC9881135 DOI: 10.1093/nar/gkac1166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families. Here, identifying intra-species variation in genomes of over 35 000 species, we develop a predictive model of gene-altering inversions, revealing key attributes of their genomic sequence attributes, including gene-pseudogene size asymmetry and orientation bias. The model predicted over 11,000 gene-altering loci covering known targeted gene families, as well as novel targeted families including Type II restriction-modification systems, a protein of unknown function, and a fusion-protein containing conjugative-pilus and phage tail domains. Publicly available long-read sequencing datasets validated representatives of these newly predicted inversion-targeted gene families, confirming intra-population genetic heterogeneity. Together, these results reveal gene-altering programmed inversions as a key strategy adopted across the bacterial domain, and highlight programmed inversions that modify Type II restriction-modification systems as a possible new mechanism for maintaining intra-population heterogeneity.
Collapse
Affiliation(s)
- Oren Milman
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- To whom correspondence should be addressed. Tel: +972 4 8293737;
| |
Collapse
|
8
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|