1
|
Banyard AC, Bennison A, Byrne AMP, Reid SM, Lynton-Jenkins JG, Mollett B, De Silva D, Peers-Dent J, Finlayson K, Hall R, Blockley F, Blyth M, Falchieri M, Fowler Z, Fitzcharles EM, Brown IH, James J. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region. Nat Commun 2024; 15:7433. [PMID: 39227574 PMCID: PMC11372179 DOI: 10.1038/s41467-024-51490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Until recent events, the Antarctic was the only major geographical region in which high pathogenicity avian influenza virus (HPAIV) had never previously been detected. Here we report on the detection of clade 2.3.4.4b H5N1 HPAIV in the Antarctic and sub-Antarctic regions of South Georgia and the Falkland Islands, respectively. We initially detected H5N1 HPAIV in samples collected from brown skuas at Bird Island, South Georgia on 8th October 2023. Since this detection, mortalities were observed in several avian and mammalian species at multiple sites across South Georgia. Subsequent testing confirmed H5N1 HPAIV across several sampling locations in multiple avian species and two seal species. Simultaneously, we also confirmed H5N1 HPAIV in southern fulmar and black-browed albatross in the Falkland Islands. Genetic assessment of the virus indicates spread from South America, likely through movement of migratory birds. Critically, genetic assessment of sequences from mammalian species demonstrates no increased risk to human populations above that observed in other instances of mammalian infections globally. Here we describe the detection, species impact and genetic composition of the virus and propose both introductory routes and potential long-term impact on avian and mammalian species across the Antarctic region. We also speculate on the threat to specific populations following recent reports in the area.
Collapse
Affiliation(s)
- Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| | - Ashley Bennison
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Alexander M P Byrne
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Joshua G Lynton-Jenkins
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Benjamin Mollett
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Dilhani De Silva
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Jacob Peers-Dent
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Kim Finlayson
- KEMH Pathology and Food, Water & Environmental Laboratory, St Mary's Walk, Stanley, FIQQ 1ZZ, Falkland Islands
| | - Rosamund Hall
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Freya Blockley
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Marcia Blyth
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Marco Falchieri
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Zoe Fowler
- Department of Agriculture, Bypass Road, Stanley, FIQQ 1ZZ, Falkland Islands
| | | | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| |
Collapse
|
2
|
Larnane A, Pierlé SA, Letexier M, Gibert J, Soucies C, Santucci J, Ghosh D, Hubac S, Hermitte F, Deleuze JF. An innovative approach for low input forensic DNA sample analysis using the GlobalFiler™ IQC PCR amplification Kit on the Magelia® platform. Forensic Sci Int Genet 2024; 72:103093. [PMID: 39013214 DOI: 10.1016/j.fsigen.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Short Tandem Repeat (STR) markers have been the gold standard for human identification testing in the forensic field for the last few decades. The GlobalFiler™ IQC PCR amplification Kit has shown sensitivity, high power of discrimination and is therefore widely used. Samples with limited DNA quantities remain a significant hurdle for streamlined human forensic identification. Reaction volume reduction in a closed system paired with automation can provide solutions to secure DNA profiles when routine methods fall short. We automated and optimized the GlobalFilerTM IQC PCR Amplification Kit on the Magelia®, a closed molecular biology platform, to test whether reaction volume reduction in a confined automated system would improve signal and sensitivity. We evaluated the platform's performance using reference and real casework samples (blood, cigarette butt, saliva and touch DNA) in the context of a 5-fold volume reduction when compared to the routine protocol. This strategy showed distinct advantages over standard treatment, notably increased signal for lower DNA inputs. Importantly, negative casework samples through routine treatment yielded "usable" DNA profiles after amplification using this strategy. This novel approach represents a first proof of concept for a method enabling users to treat limited samples, or to partition routine samples for multiple analyses.
Collapse
Affiliation(s)
- Amel Larnane
- Institut de recherche criminelle de la gendarmerie nationale (IRCGN), Cergy-Pontoise, 95000, France; Centre national de recherche en génomique humaine (CNRGH), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Evry-Courcouronnes 91000, France.
| | | | - Mélanie Letexier
- Centre national de recherche en génomique humaine (CNRGH), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Evry-Courcouronnes 91000, France.
| | - Josephine Gibert
- Institut de recherche criminelle de la gendarmerie nationale (IRCGN), Cergy-Pontoise, 95000, France.
| | | | | | | | - Sylvain Hubac
- Institut de recherche criminelle de la gendarmerie nationale (IRCGN), Cergy-Pontoise, 95000, France.
| | - Francis Hermitte
- Institut de recherche criminelle de la gendarmerie nationale (IRCGN), Cergy-Pontoise, 95000, France.
| | - Jean-François Deleuze
- Centre national de recherche en génomique humaine (CNRGH), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Evry-Courcouronnes 91000, France.
| |
Collapse
|
3
|
Wang Y, Zhai J, Tang B, Dong Y, Sun S, He S, Zhao W, Lancuo Z, Jia Q, Wang W. Metagenomic comparison of gut communities between wild and captive Himalayan griffons. Front Vet Sci 2024; 11:1403932. [PMID: 38784654 PMCID: PMC11112026 DOI: 10.3389/fvets.2024.1403932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Himalayan griffons (Gyps himalayensis), known as the scavenger of nature, are large scavenging raptors widely distributed on the Qinghai-Tibetan Plateau and play an important role in maintaining the balance of the plateau ecosystem. The gut microbiome is essential for host health, helping to maintain homeostasis, improving digestive efficiency, and promoting the development of the immune system. Changes in environment and diet can affect the composition and function of gut microbiota, ultimately impacting the host health and adaptation. Captive rearing is considered to be a way to protect Himalayan griffons and increase their population size. However, the effects of captivity on the structure and function of the gut microbial communities of Himalayan griffons are poorly understood. Still, availability of sequenced metagenomes and functional information for most griffons gut microbes remains limited. Methods In this study, metagenome sequencing was used to analyze the composition and functional structures of the gut microbiota of Himalayan griffons under wild and captive conditions. Results Our results showed no significant differences in the alpha diversity between the two groups, but significant differences in beta diversity. Taxonomic classification revealed that the most abundant phyla in the gut of Himalayan griffons were Fusobacteriota, Proteobacteria, Firmicutes_A, Bacteroidota, Firmicutes, Actinobacteriota, and Campylobacterota. At the functional level, a series of Kyoto Encyclopedia of Genes and Genome (KEGG) functional pathways, carbohydrate-active enzymes (CAZymes) categories, virulence factor genes (VFGs), and pathogen-host interactions (PHI) were annotated and compared between the two groups. In addition, we recovered nearly 130 metagenome-assembled genomes (MAGs). Discussion In summary, the present study provided a first inventory of the microbial genes and metagenome-assembled genomes related to the Himalayan griffons, marking a crucial first step toward a wider investigation of the scavengers microbiomes with the ultimate goal to contribute to the conservation and management strategies for this near threatened bird.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yonggang Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Shengzhen Sun
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
4
|
González-Aravena M, Galbán-Malagón C, Castro-Nallar E, Barriga GP, Neira V, Krüger L, Adell AD, Olivares-Pacheco J. Detection of SARS-CoV-2 in Wastewater Associated with Scientific Stations in Antarctica and Possible Risk for Wildlife. Microorganisms 2024; 12:743. [PMID: 38674687 PMCID: PMC11051888 DOI: 10.3390/microorganisms12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.
Collapse
Affiliation(s)
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago 8580745, Chile;
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Institute for Environment, Florida International University, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca 3481118, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca 3460000, Chile
| | - Gonzalo P. Barriga
- Laboratorio de Virus Emergentes, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Víctor Neira
- Medicina Preventiva Animal, Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas 6200985, Chile;
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7750000, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 9350841, Chile;
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| |
Collapse
|
5
|
Gomes F, Prado T, Degrave W, Moreira L, Magalhães M, Magdinier H, Vilela R, Siqueira M, Brandão M, Ogrzewalska M. Active surveillance for influenza virus and coronavirus infection in Antarctic birds and mammals in environmental fecal samples, South Shetland Islands. AN ACAD BRAS CIENC 2023; 95:e20230741. [PMID: 38126386 DOI: 10.1590/0001-3765202320230741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous Antarctic species are recognized as reservoirs for various pathogens, and their migratory behavior allows them to reach the Brazilian coast, potentially contributing to the emergence and circulation of new infectious diseases. To address the potential zoonotic risks, we conducted surveillance of influenza A virus (IAV) and coronaviruses (CoVs) in the Antarctic Peninsula, specifically focusing on different bird and mammal species in the region. During the summer of 2021/2022, as part of the Brazilian Antarctic Expedition, we collected and examined a total of 315 fecal samples to target these respiratory viruses. Although we did not detect the viruses of interest during this particular expedition, previous research conducted by our team has shown the presence of the H11N2 subtype of influenza A virus in penguin fecal samples from the same region. Given the continuous emergence of new viral strains worldwide, it is crucial to maintain active surveillance in the area, contributing to strengthening integrated One Health surveillance efforts.
Collapse
Affiliation(s)
- Fernanda Gomes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Tatiana Prado
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wim Degrave
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lucas Moreira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Laboratório de Micologia, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maithê Magalhães
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Harrison Magdinier
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Roberto Vilela
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marilda Siqueira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Martha Brandão
- Vice-Presidência de Produção e Inovação em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Ogrzewalska
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|