1
|
Bakre A, Sweeney R, Espinoza E, Suarez DL, Kapczynski DR. The ACE2 Receptor from Common Vampire Bat ( Desmodus rotundus) and Pallid Bat ( Antrozous pallidus) Support Attachment and Limited Infection of SARS-CoV-2 Viruses in Cell Culture. Viruses 2025; 17:507. [PMID: 40284950 PMCID: PMC12031370 DOI: 10.3390/v17040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to gain cellular entry and begin the replication cycle. In previous studies, we demonstrated that human and various bat ACE2 proteins can be utilized by SC2 viruses for entry. Bats are a suspected natural host of SC2 because of genetic homology with other bat coronaviruses. In this work, we demonstrate that expression of ACE2 genes from the common vampire bat (CVB) (Desmodus rotundus) and the pallid bat (PB) (Antrozous pallidus), supports infection and replication of some SC2 viruses in cell culture. Two cell lines were produced, CVB-ACE2 and PB-ACE2, expressing ACE2 from these bat species along with human TMPRSS2, in a model previously established using a non-permissive chicken DF-1 cell line. Results demonstrate that the original Wuhan lineage (WA1) virus and the Delta variant were able to infect and replicate in either of the bat ACE2 cell lines. In contrast, the Lambda and Omicron variant viruses infected both cell lines, but viral titers did not increase following infection. Viral detection using immunofluorescence demonstrated abundant spike (S) protein staining for the WA1 and Delta variants but little signal for the Lambda and Omicron variants. These studies demonstrate that while ACE2 from CVB and PB can be utilized by SC2 viruses to gain entry for infection, later variants (Lambda and Omicron) replicate poorly in these cell lines. These observations suggest more efficient human adaption in later SC2 variants that become less fit for replication in other animal species.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratories, US National Poultry Research Center, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (R.S.); (E.E.); (D.L.S.); (D.R.K.)
| | | | | | | | | |
Collapse
|
2
|
Yang J, Wang Y, Yang H, Huang X. The complete mitochondrial genome of Brachytarsina amboinensis (Diptera: Hippoboscoidea: Streblidae) provides new insights into phylogenetic relationships of Hippoboscoidea. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:836-846. [PMID: 39690431 DOI: 10.1017/s0007485324000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The family Streblidae is a significant grouping of dipteran insects within the superfamily Hippoboscoidea, which parasitizes the body surface of bats. With the global spread of bat-related pathogens in recent years, Streblidae has gained increasing attention due to its potential for pathogen transmission. A sample of Brachytarsina amboinensis was sequenced on the B. amboinensis were obtained, compared with available Streblidae mitogenomes, and the phylogeny of Hippoboscoidea was reconstructed. The results indicate that the mitochondrial genome of B. amboinensis exhibits a relatively high degree of conservation, with an identical gene count, arrangement, and orientation as the ancestral insect's genome. Base composition analysis revealed a strong bias towards A and T in the base composition. Selection pressure analysis indicated strong purifying selection acting on cox1. Pairwise genetic distance analysis showed that cox1 evolved at a relatively slow rate. Regarding phylogenetic relationships, the constructed phylogenetic trees using Bayesian inference and Maximum Likelihood methods supported the monophyly of the Hippoboscoidea, Glossinidae, Hippoboscidae, and Nycteribiidae clades, with high nodal support values. Our research confirmed the paraphyly of the families Streblidae. In the familial relations between Nycteribiidae and Streblidae, New World Streblidae share a closer kinship with Nycteribiidae. This contrasts with prior findings which indicated that Old World Streblidae share a closer kinship with Nycteribiidae. This study not only enhances the molecular database for bat flies but also provides a valuable reference for the identification and phylogenetic analysis of Streblidae.
Collapse
Affiliation(s)
- Jinting Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China
| | - Yujuan Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Huijuan Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaobin Huang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China
| |
Collapse
|
3
|
Siew ZY, Tan YF, Iswara RP, Wong SF, Wong ST, Tan BK, Leong PP, Tan CW, Wang LF, Leong CO, Voon K. Human cytokeratin 1 plays a role in the interaction of Pteropine orthoreovirus with Hek293 cells but not HeLa cells. Microbes Infect 2024; 26:105243. [PMID: 38380604 DOI: 10.1016/j.micinf.2023.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pteropine orthoreovirus (PRV) causes respiratory tract infections in humans. Despite its emergence as a zoonotic and respiratory virus, little is known about its cell tropism, which hampers progress in fully understanding its pathogenesis in humans. Hek293 cells are most susceptible to PRV infection, while HeLa cells are the least. Human cytokeratin 1 (CK1) was identified as the protein that interacts with PRV. The immunofluorescence assay and qPCR results revealed prior treatment with anti-CK1 may provide Hek293 cells protection against PRV. The KRT1-knockout Hek293 cells were less susceptible to PRV infection. Further study into the pathogenesis of PRV in humans is needed.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yeh Fong Tan
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | | | - Shew Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Boon Keat Tan
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Sg Long, Malaysia
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Chee Onn Leong
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; AGTC Genomics, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|