1
|
Magwaza B, Amobonye A, Bhagwat P, Pillai S. Biochemical and in silico structural properties of a thermo-acid stable β-glucosidase from Beauveria bassiana. Heliyon 2024; 10:e28667. [PMID: 38571589 PMCID: PMC10988058 DOI: 10.1016/j.heliyon.2024.e28667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
β-glucosidase hydrolyses the glycosidic bonds in cellobiose and cello-oligosaccharides, a critical step in the saccharification for biofuel production. Hence, the aim of this study was to gain insights into the biochemical and structural properties of a β-glucosidase from Beauveria bassiana, an entomopathogenic fungus. The β-glucosidase was purified to homogeneity using salt precipitation, ultrafiltration, and chromatographic techniques, attaining a specific activity of 496 U/mg. The molecular mass of the enzyme was then estimated via SDS-PAGE to be 116 kDa, while its activity pattern was confirmed by zymography using 4-methylumbelliferyl-β-d-glucopyranoside. Furthermore, the pH optima and temperature of the enzyme were found to be pH 5.0 and 60 °C respectively; its activity was significantly enhanced by Mg2+ and Na+ and was found to be relatively moderate in the presence of ethanol and dichloromethane. Molecular docking of the modelled B. bassiana β-glucosidase structure with the substrates, viz., 4-nitrophenyl β-d-glucopyranoside and cellobiose, revealed the binding affinity energies of -7.2 and -6.2 (kcal mol-1), respectively. Furthermore, the computational study predicted Lys-657, Asp-658, and Arg-1000 as the core amino acid residues in the catalytic site of the enzyme. This is the first investigation into a purified β-glucosidase from B. bassiana, providing valuable insights into the functional properties of carbohydrases from entomopathogenic fungal endophytes.
Collapse
Affiliation(s)
- Buka Magwaza
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
2
|
Escudero-Leyva E, Vieto S, Avendaño R, Rojas-Gätjens D, Agüero P, Pacheco C, Montero ML, Chaverri P, Chavarría M. Fungi with history: Unveiling the mycobiota of historic documents of Costa Rica. PLoS One 2023; 18:e0279914. [PMID: 36652424 PMCID: PMC9847896 DOI: 10.1371/journal.pone.0279914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/18/2022] [Indexed: 01/19/2023] Open
Abstract
We studied the physicochemical characteristics and mycobiota associated to five key historic documents from Costa Rica, including the Independence Act of Costa Rica from 1821. We used nondestructive techniques (i.e., ATR-FTIR and XRF) to determine paper and ink composition. Results show that some documents are composed of cotton-based paper, whereas others were made of wood cellulose with an increased lignin content. We also determined that the ink employed in some of the documents is ferrogallic. Cultivation and molecular techniques were used to characterize the fungi inhabiting the documents. In total, 22 fungal isolates were obtained: 15 from the wood-cellulose-based documents and seven from the other three cotton-based. We also tested the cellulolytic activity of the recovered fungi; 95% of the fungi presented cellulolytic activity correlated to their ability to cause deterioration of the paper. Results suggest that cotton-based paper is the most resistant to fungal colonization and that most of the isolates have cellulolytic activity. This work increases the knowledge of the fungal diversity that inhabits historic documents and its relationship with paper composition and provides valuable information to develop strategies to conserve and restore these invaluable documents.
Collapse
Affiliation(s)
- Efraín Escudero-Leyva
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Paola Agüero
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | | | - Mavis L. Montero
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José, Costa Rica
| | - Priscila Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, United States of America
- * E-mail: (PC); (MC)
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
- * E-mail: (PC); (MC)
| |
Collapse
|
3
|
Amobonye A, Bhagwat P, Singh S, Pillai S. Beauveria bassiana Xylanase: Characterization and Wastepaper Deinking Potential of a Novel Glycosyl Hydrolase from an Endophytic Fungal Entomopathogen. J Fungi (Basel) 2021; 7:jof7080668. [PMID: 34436207 PMCID: PMC8398892 DOI: 10.3390/jof7080668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus widely used as a biopesticide for insect control; it has also been shown to exist as an endophyte, promoting plant growth in many instances. This study highlights an alternative potential of the fungus; in the production of an industrially important biocatalyst, xylanase. In this regard, Beauveria bassiana SAN01 xylanase was purified to homogeneity and subsequently characterized. The purified xylanase was found to have a specific activity of 324.2 U·mg−1 and an estimated molecular mass of ~37 kDa. In addition, it demonstrated optimal activity at pH 6.0 and 45 °C while obeying Michaelis–Menton kinetics towards beechwood xylan with apparent Km, Vmax and kcat of 1.98 mg·mL−1, 6.65 μM·min−1 and 0.62 s−1 respectively. The enzyme activity was strongly inhibited by Ag2+ and Fe3+ while it was significantly enhanced by Co2+ and Mg2+. Furthermore, the xylanase was shown to effectively deink wastepaper at an optimal rate of 106.72% through its enzymatic disassociation of the fiber-ink bonds as demonstrated by scanning electron microscopy and infrared spectroscopy. This is the first study to demonstrate the biotechnological application of a homogeneously purified glycosyl hydrolase from B. bassiana.
Collapse
|
4
|
Shen L, Su Y, Sun Y, Wang G, Chen H, Yu X, Zhang S, Chen G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Amobonye A, Bhagwat P, Pandey A, Singh S, Pillai S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol 2020; 40:1019-1034. [DOI: 10.1080/07388551.2020.1805403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ayodeji Amobonye
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|