1
|
Singh R, Shahul R, Kumar V, Yadav AK, Mehta PK. Microbial amidases: Characterization, advances and biotechnological applications. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:44-58. [PMID: 39811779 PMCID: PMC11732141 DOI: 10.1016/j.biotno.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The amidases (EC 3.5.1.4) are versatile hydrolase biocatalysts that have been the attention of academia and industries for stereo-selective synthesis and bioremediation. These are categorized based on the amino acid sequence and substrate specificity. Notably, the Signature amidase family is distinguished by a characteristic signature sequence, GGSS(S/G)GS, which encompasses highly conserved Ser-Ser-Lys catalytic residues, and the amidases belonging to this family typically demonstrate a broad substrate spectrum activity. The amidases classified within the nitrilase superfamily possess distinct Glu-Lys-Cys catalytic residues and exhibit activity towards small aliphatic substrates. Recent discoveries have underscored the potential role of amidases in the degradation of toxic amides present in polymers, insecticides, and food products. This expands the horizons for amidase-mediated biodegradation of amide-laden pollutants and fosters sustainable development alongside organic synthesis. The burgeoning global production facilities are expected to drive a heightened demand for this enzyme, attributable to its promising chemo-, regio-, and enantioselective hydrolysis capabilities for a variety of amides. Advances in protein engineering have enhanced the catalytic efficiency, structural stability, and substrate selectivity of amidases. Concurrently, the heterologous expression of amidase genes sourced from thermophiles has facilitated the development of highly stable amidases with significant industrial relevance. Beyond their biotransformation capabilities concerning amides, through amido-hydrolase and acyltransferase activities, recent investigations have illuminated the potential of amidase-mediated degradation of amide-containing pollutants in soil and aquatic environments. This review offers a comprehensive overview of recent advancements pertaining to microbial amidases (EC 3.5.1.4), focusing on aspects such as their distribution, gene mining methodologies, enzyme stability, protein engineering, reusability, and biocatalytic efficacy in organic synthesis and biodegradation.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Refana Shahul
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Vijay Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| |
Collapse
|
2
|
Show KY, Chang JS, Lee DJ. Degradation of high-strength acrylic acid wastewater with anaerobic granulation technology: A mini-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121018. [PMID: 36610649 DOI: 10.1016/j.envpol.2023.121018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The anaerobic granulation technology has been successfully applied full-scale for treating high-strength recalcitrant acrylic acid wastewater. This mini-review highlighted the recalcitrance of acrylic acid and its biological degradation pathways. And then, the full-scale practices using anaerobic granulation technology for acrylic wastewater treatment were outlined. The granules are proposed to provide barriers for high-concentration acrylic acid to the embedded anaerobic microbes, maintaining its high degradation rate without apparent substrate inhibition. Based on this proposal, the prospects of applying anaerobic granulation technology to handle a wide range of high-strength recalcitrant wastewaters, to improve the current process performances, and to recover renewable resources were delineated. The anaerobic granulation for high-strength recalcitrant wastewater treatment is an emergent technology that can assist in fulfilling the appeals of the circular bioeconomy of modern society.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co., Ltd., Nanjing, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
3
|
Zorina AS, Maksimov AY, Maksimova YG. Degradation of Nitriles by Mixed Biofilms of Nitrile-Hydrolyzing Bacteria in Submerged Packed-Bed Reactor. Indian J Microbiol 2022; 62:610-617. [PMID: 36458224 PMCID: PMC9705647 DOI: 10.1007/s12088-022-01030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022] Open
Abstract
Degradation of nitriles by mixed biofilms of nitrile-hydrolyzing bacteria Alcaligenes faecalis 2 and Rhodococcus ruber gt 1 grown on basalt and carbon carriers, in a submerged packed-bed reactor was studied. It was shown the formation of a massive mixed biofilm of Al. faecalis 2 and R. ruber gt 1 and the effective removal of nitriles and products of their degradation from the reaction medium. After the accumulation of carboxylic acid and some of the unprocessed substrate, the system adapts to 600-1000 h of biofilter operation, which is expressed in a decrease in the content of substrate and reaction products in the medium. The rate of acetonitrile and acrylonitrile utilization was 0.072-0.086 and 0.039-0.215 g/h, respectively, and acrylonitrile utilization with maximum rate was realized by a mixed biofilm on carbon fibers. Biofilms grown on mixed fibers in a "sandwich"-type reactor had the best characteristics for the transformation of aceto- and acrylonitrile (removal capacity of 99.6-99.9%, nitrile utilization rate of 0.080-0.095 g/h). Biofilms grown on basalt fiber with a diameter of 4-12 μm are also well suited for the degradation of acetonitrile (removal capacity of 100%, nitrile utilization rate of 0.086 g/h). The results of metagenomic analysis showed the resistance of Al. faecalis 2 and R. ruber gt 1 mixed biofilms against leaching from a biofilter and to competitive growth in an open system, indicating the advantages of biofilms over homogeneous biomass for wastewater treatment from nitrile compounds. Biofilms of two species of nitrile hydrolyzing bacteria on basalt and carbon fibers effectively purify water from nitriles in a submerged packed-bed reactor. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01030-z.
Collapse
Affiliation(s)
- A. S. Zorina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia 614081
| | - A. Yu. Maksimov
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia 614081
- Perm State National Research University, Perm, Russia 614990
| | - Yu. G. Maksimova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, Russia 614081
- Perm State National Research University, Perm, Russia 614990
| |
Collapse
|
4
|
Chen Y, Zhao M, Hu L, Wang Z, Hrynsphan D, Chen J. Characterization and Functional Analysis of Bacillus aryabhattai CY for Acrylic Acid Biodegradation: Immobilization and Metabolic Pathway. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Kumar A, Prasad B. Mechanistic approach of SO4•−/•OH radical toward target pollutants degradation simultaneously enhanced activity and stability of perovskite-like catalyst SrCuxNi1-xO3. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Gaytán I, Burelo M, Loza-Tavera H. Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol 2021; 105:991-1006. [PMID: 33427930 PMCID: PMC7798386 DOI: 10.1007/s00253-020-11073-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Abstract Acrylic polymers (AP) are a diverse group of materials with broad applications, frequent use, and increasing demand. Some of the most used AP are polyacrylamide, polyacrylic acid, polymethyl methacrylates, and polyacrylonitrile. Although no information for the production of all AP types is published, data for the most used AP is around 9 MT/year, which gives an idea of the amount of waste that can be generated after products’ lifecycles. After its lifecycle ends, the fate of an AP product will depend on its chemical structure, the environmental setting where it was used, and the regulations for plastic waste management existing in the different countries. Even though recycling is the best fate for plastic polymer wastes, few AP can be recycled, and most of them end up in landfills. Because of the pollution crisis the planet is immersed, setting regulations and developing technological strategies for plastic waste management are urgent. In this regard, biotechnological approaches, where microbial activity is involved, could be attractive eco-friendly strategies. This mini-review describes the broad AP diversity, their properties and uses, and the factors affecting their biodegradability, underlining the importance of standardizing biodegradation quantification techniques. We also describe the enzymes and metabolic pathways that microorganisms display to attack AP chemical structure and predict some biochemical reactions that could account for quaternary carbon-containing AP biodegradation. Finally, we analyze strategies to increase AP biodegradability and stress the need for more studies on AP biodegradation and developing stricter legislation for AP use and waste control. Key points • Acrylic polymers (AP) are a diverse and extensively used group of compounds. • The environmental fates and health effects of AP waste are not completely known. • Microorganisms and enzymes involved in AP degradation have been identified. • More biodegradation studies are needed to develop AP biotechnological treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11073-1.
Collapse
Affiliation(s)
- Itzel Gaytán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Manuel Burelo
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México.
| |
Collapse
|
7
|
He J, Chen Y, Dai L, Yao J, Mei Y, Hrynsphan D, Tatsiana S, Chen J. Rapid and Complete Biodegradation of Acrylic Acid by a Novel Strain Rhodococcus ruber JJ-3: Kinetics, Carbon Balance, and Degradation Pathways. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0465-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Maksimova YG, Mochalova EM, Demakov VA. Influence of Acrylamide on Energy Status and Survival of Bacteria of Different Systematic Groups. DOKL BIOCHEM BIOPHYS 2020; 492:117-120. [PMID: 32632586 DOI: 10.1134/s1607672920030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022]
Abstract
We studied the effect of acrylamide on the content of intracellular ATP in the cells of bacteria of the genera Rhodococcus and Alcaligenes, the luminescence of the genetically engineered strain Escherichia coli K12 TG1 (pXen7), and the survival of bacteria of various systematic groups. According to the level of decrease in the concentration of intracellular ATP, it was found that the strain with lower amidase activity (R. erythropolis 6-21) and Gram-negative proteobacteria A. faecalis 2 were the most sensitive to acrylamide after a 20-min exposure, while the strain R. ruber gt 1 was stable, having a high nitrile hydratase activity in combination with a low amidase activity. EC50 of acrylamide for 2 h was 7.1 g/L for E. coli K12 TG1 (pXen7). Acrylamide at a concentration of 10-20 mM added to the culture medium led to a slight decrease in the number of CFUs of Rhodococcus, A. faecalis 2, and E. coli compared to the control. At an acrylamide concentration of 250 mM, from 0.016 to 0.116% of viable bacterial cells remained, and a solution of 500 mM and higher inhibited the growth of the majority of the studied strains. The results confirm that acrylamide is much less toxic to prokaryotes than to eukaryotes.
Collapse
Affiliation(s)
- Yu G Maksimova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia. .,Perm State National Research University, Perm, Russia.
| | - E M Mochalova
- Perm State National Research University, Perm, Russia
| | - V A Demakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, Perm, Russia.,Perm State National Research University, Perm, Russia
| |
Collapse
|
9
|
Maksimova YG, Yakimova MS, Maksimov AY. Biocatalysts Based on Bacterial Cells with Amidase Activity for the Synthesis of Acrylic Acid from Acrylamide. CATALYSIS IN INDUSTRY 2019. [DOI: 10.1134/s2070050419030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|