1
|
Abu-Tahon MA, Abdel-Majeed AM, Ghareib M, Housseiny MM, Abdallah WE. Thrombolytic and anticoagulant efficiencies of purified fibrinolytic enzyme produced from Cochliobolus hawaiiensis under solid-state fermentation. Biotechnol Appl Biochem 2023; 70:1954-1971. [PMID: 37463837 DOI: 10.1002/bab.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
Cochliobolus hawaiiensis Alcorn Assiut University Mycological Centre 8606 was chosen from the screened 20 fungal species as the potent producer of fibrinolytic enzyme on skimmed-milk agar plates. The greatest enzyme yield was attained when the submerged fermentation (SmF) conditions were optimized, and it was around (39.7 U/mg protein). Moreover, upon optimization of fibrinolytic enzyme production under solid-state fermentation (SSF), the maximum productivity of fibrinolytic enzyme was greatly increased recorded a bout (405 U/mg protein) on sugarcane bagasse, incubation period of 5 days, moisture level of 100%, initial pH of salt basal medium 7.8, incubation temperature at 35°C, and supplementation of the salt basal medium with corn steep liquor (80%, v/v). The yield of fibrinolytic enzyme by C. hawaiiensis under SSF was higher than that of SmF with about 10.20-fold. The purification procedures of fibrinolytic enzyme by ammonium sulfate (70%), gel filtration, and ion-exchange columns chromatography caused a great increase in its specific activity to 2581.6 U/mg protein with an overall yield of 55.89%, 6.37 purification fold and molecular weight of 35 kDa. Maximal activity was recorded at pH 7 and 37°C. Significant pH stability was recorded at pH 6.6-7.2, and thermal stability was recorded at 33-41°C. The enzyme showed the highest affinity toward fibrin, with Vmax of 240 U/mL and an apparent Km value of 47.61 mmol. Mg2+ and Ca2+ moderately induced fibrinolytic activity, whereas Cu2+ and Zn2+ greatly suppressed the enzyme activity. The produced enzyme is categorized as serine protease and non-metalloprotease. The purified fibrinolytic enzyme showed efficient thrombolytic and antiplatelet aggregation activities by completely prevention and dissolution of the blood clot which confirmed by microscopic examination and amelioration of blood coagulation assays. These findings suggested that the produced fibrinolytic enzyme is a promising agent in management of blood coagulation disorders.
Collapse
Affiliation(s)
- Medhat Ahmed Abu-Tahon
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt
| | - Ahmad Mohammad Abdel-Majeed
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia
- Department of zoology, Faculty of Science, Minia University, Minya City, Egypt
| | - Mohamed Ghareib
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt
| | - Manal Maher Housseiny
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt
| | - Wafaa E Abdallah
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt
| |
Collapse
|
2
|
Singh R, Gautam P, Sharma C, Osmolovskiy A. Fibrin and Fibrinolytic Enzyme Cascade in Thrombosis: Unravelling the Role. Life (Basel) 2023; 13:2196. [PMID: 38004336 PMCID: PMC10672518 DOI: 10.3390/life13112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Blood clot formation in blood vessels (thrombosis) is a major cause of life-threatening cardiovascular diseases. These clots are formed by αA-, βB-, and ϒ-peptide chains of fibrinogen joined together by isopeptide bonds with the help of blood coagulation factor XIIIa. These clot structures are altered by various factors such as thrombin, platelets, transglutaminase, DNA, histones, and red blood cells. Various factors are used to dissolve the blood clot, such as anticoagulant agents, antiplatelets drugs, fibrinolytic enzymes, and surgical operations. Fibrinolytic enzymes are produced by microorganisms (bacteria, fungi, etc.): streptokinase of Streptococcus hemolyticus, nattokinase of Bacillus subtilis YF 38, bafibrinase of Bacillus sp. AS-S20-I, longolytin of Arthrobotrys longa, versiase of Aspergillus versicolor ZLH-1, etc. They act as a thrombolytic agent by either enhancing the production of plasminogen activators (tissue or urokinase types), which convert inactive plasminogen to active plasmin, or acting as plasmin-like proteins themselves, forming fibrin degradation products which cause normal blood flow again in blood vessels. Fibrinolytic enzymes may be classified in two groups, as serine proteases and metalloproteases, based on their catalytic properties, consisting of a catalytic triad responsible for their fibrinolytic activity having different physiochemical properties (such as molecular weight, pH, and temperature). The analysis of fibrinolysis helps to detect hyperfibrinolysis (menorrhagia, renal failure, etc.) and hypofibrinolysis (diabetes, obesity, etc.) with the help of various fibrinolytic assays such as a fibrin plate assay, fibrin microplate assay, the viscoelastic method, etc. These fibrinolytic activities serve as a key aspect in the recognition of numerous cardiovascular diseases and can be easily produced on a large scale with a short generation time by microbes and are less expensive.
Collapse
Affiliation(s)
- Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | - Prerna Gautam
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | - Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | | |
Collapse
|
3
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
4
|
Alipkina S, Kornienko E, Nalobin D, Osmolovskiy A. Acute Toxicity, Immunotoxicity and Allergenicity of Protease Complex Obtained from Micromycete Sarocladium strictum. Pharmaceutics 2021; 13:1660. [PMID: 34683953 PMCID: PMC8539265 DOI: 10.3390/pharmaceutics13101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
The different effects on animals of the thrombolytic protease complex of the new producer S. strictum 203 were studied. The tests of acute toxicity, immunotoxicity and allergenicity should conclude that the studied proteolytic complex is safe for medical usage. For the intravenous and the intraperitoneal routes of administration, the maximum tolerated dose and the median lethal dose were not determined.
Collapse
Affiliation(s)
- Svetlana Alipkina
- Biological Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (D.N.)
| | | | | | - Alexander Osmolovskiy
- Biological Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (D.N.)
| |
Collapse
|
5
|
Komarevtsev SK, Evseev PV, Shneider MM, Popova EA, Tupikin AE, Stepanenko VN, Kabilov MR, Shabunin SV, Osmolovskiy AA, Miroshnikov KA. Gene Analysis, Cloning, and Heterologous Expression of Protease from a Micromycete Aspergillus ochraceus Capable of Activating Protein C of Blood Plasma. Microorganisms 2021; 9:1936. [PMID: 34576831 PMCID: PMC8471544 DOI: 10.3390/microorganisms9091936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Micromycetes are known to secrete numerous enzymes of biotechnological and medical potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary for proper folding and maturation. The recombinant protease was identical to the native enzyme from micromycete in terms of its biological properties, including an ability to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in medicine, veterinary science, diagnostics, and other applications.
Collapse
Affiliation(s)
- Sergei K. Komarevtsev
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Elizaveta A. Popova
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Vasiliy N. Stepanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Sergei V. Shabunin
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Alexander A. Osmolovskiy
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Konstantin A. Miroshnikov
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| |
Collapse
|
6
|
Osmolovskiy AA, Schmidt L, Orekhova AV, Komarevtsev SK, Kreyer VG, Shabunin SV, Egorov NS. Action of Extracellular Proteases of Aspergillus flavus and Aspergillus ochraceus Micromycetes on Plasma Hemostasis Proteins. Life (Basel) 2021; 11:782. [PMID: 34440526 PMCID: PMC8400497 DOI: 10.3390/life11080782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we investigated the properties of proteolytic enzymes of two species of Aspergillus, Aspergillus flavus 1 (with a high degree of pathogenicity) and Aspergillus ochraceus L-1 (a conditional pathogen), and their effects on various components of the hemostasis system (in vitro) in the case of their penetration into the bloodstream. We showed that micromycete proteases were highly active in cleaving both globular (albuminolysis) and fibrillar (fibrin) proteins, and, to varying degrees, they could coagulate the plasma of humans and animals (due to proteolysis of factors of the blood coagulation cascade) but were not able to coagulate fibrinogen. The proteases of both Aspergillus fully hydrolyzed thrombi in 120-180 min. Micromycetes did not show hemolytic activity but were able to break down hemoglobin.
Collapse
Affiliation(s)
- Alexander A. Osmolovskiy
- Biological Faculty, M.V. Lomonosov Moscow State University, 199234 Moscow, Russia; (A.V.O.); (V.G.K.)
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.K.K.); (S.V.S.)
| | - Laura Schmidt
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany;
| | - Anastasia V. Orekhova
- Biological Faculty, M.V. Lomonosov Moscow State University, 199234 Moscow, Russia; (A.V.O.); (V.G.K.)
- Department of Public Health and Infectious Disease, “La Sapienza” University of Rome, 00185 Rome, Italy
| | - Sergey K. Komarevtsev
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.K.K.); (S.V.S.)
| | - Valeriana G. Kreyer
- Biological Faculty, M.V. Lomonosov Moscow State University, 199234 Moscow, Russia; (A.V.O.); (V.G.K.)
| | - Sergey V. Shabunin
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.K.K.); (S.V.S.)
| | - Nikolay S. Egorov
- International Biotechnological Center, M.V. Lomonosov Moscow State University, 199234 Moscow, Russia;
| |
Collapse
|