1
|
Abrosimova LA, Kuznetsov NA, Astafurova NA, Samsonova AR, Karpov AS, Perevyazova TA, Oretskaya TS, Fedorova OS, Kubareva EA. Kinetic Analysis of the Interaction of Nicking Endonuclease BspD6I with DNA. Biomolecules 2021; 11:1420. [PMID: 34680052 PMCID: PMC8533099 DOI: 10.3390/biom11101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Nicking endonucleases (NEs) are enzymes that incise only one strand of the duplex to produce a DNA molecule that is 'nicked' rather than cleaved in two. Since these precision tools are used in genetic engineering and genome editing, information about their mechanism of action at all stages of DNA recognition and phosphodiester bond hydrolysis is essential. For the first time, fast kinetics of the Nt.BspD6I interaction with DNA were studied by the stopped-flow technique, and changes of optical characteristics were registered for the enzyme or DNA molecules. The role of divalent metal cations was estimated at all steps of Nt.BspD6I-DNA complex formation. It was demonstrated that divalent metal ions are not required for the formation of a non-specific complex of the protein with DNA. Nt.BspD6I bound five-fold more efficiently to its recognition site in DNA than to a random DNA. DNA bending was confirmed during the specific binding of Nt.BspD6I to a substrate. The optimal size of Nt.BspD6I's binding site in DNA as determined in this work should be taken into account in methods of detection of nucleic acid sequences and/or even various base modifications by means of NEs.
Collapse
Affiliation(s)
- Liudmila A. Abrosimova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia A. Astafurova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | | | - Andrey S. Karpov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Tatiana A. Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, 142290 Puschino, Russia;
| | - Tatiana S. Oretskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| |
Collapse
|
2
|
Perevyazova TA, Yunusova AK, Artyukh RI, Viryasov MB, Kubareva EA, Zheleznaya LA. Restriction Endonuclease BspD6II, a New Thermophilic Isoschizomer of Eco57I. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abrosimova LA, Migur AY, Kubareva EA, Zatsepin TS, Gavshina AV, Yunusova AK, Perevyazova TA, Pingoud A, Oretskaya TS. A study on endonuclease BspD6I and its stimulus-responsive switching by modified oligonucleotides. PLoS One 2018; 13:e0207302. [PMID: 30475809 PMCID: PMC6261011 DOI: 10.1371/journal.pone.0207302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022] Open
Abstract
Nicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.BstD6I) acts as a NEase. Here we present a study of interaction of restriction endonuclease BspD6I with modified DNA containing single non-nucleotide insertion with an azobenzene moiety in the enzyme cleavage sites or in positions of sugar-phosphate backbone nearby. According to these data, we designed a number of effective stimulus-responsive oligonucleotide inhibitors bearing azobenzene or triethylene glycol residues. These modified oligonucleotides modulated the functional activity of Nt.BspD6I after cooling or heating. We were able to block the cleavage of T7 phage DNA by this enzyme in the presence of such inhibitors at 20-25°C, whereas the Nt.BspD6I ability to hydrolyze DNA was completely restored after heating to 45°C. The observed effects can serve as a basis for the development of a platform for regulation of NEase activity in vitro or in vivo by external signals.
Collapse
Affiliation(s)
- Liudmila A. Abrosimova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anzhela Yu. Migur
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Kubareva
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Timofei S. Zatsepin
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia
| | - Aleksandra V. Gavshina
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alfiya K. Yunusova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Tatiana A. Perevyazova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Tatiana S. Oretskaya
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Peculiarities of the interaction of the restriction endonuclease BspD6I with DNA containing its recognition site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1072-1082. [PMID: 27216152 DOI: 10.1016/j.bbapap.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.BspD6I) from Bacillus species strain D6, which consists of the large subunit - nicking endonuclease BspD6I (Nt.BspD6I), and the small subunit (ss.BspD6I). Nt.BspD6I can function independently. Similar enzymes are now widely used in numerous biotechnological applications. The aim of this study was to investigate the fundamental properties of two subunits of R.BspD6I and their interdependence in the course of R.BspD6I activity. METHODS The binding and hydrolysis of DNA duplexes by R.BspD6I are primary analyzed by gel electrophoresis. To elucidate the difference between Nt.BspD6I interaction with the substrate and product of hydrolysis, the thickness shear mode acoustic method is used. RESULTS AND CONCLUSIONS The thermodynamic and kinetic parameters of the Nt.BspD6I interaction with DNA are determined. For the first time we demonstrated that Nt.BspD6I bends the DNA during complex formation. Nt.BspD6I is able to form complexes with the product nicked in the top strand and ss.BspD6I cleaves the bottom strand of the DNA consecutively. Furthermore, the influence of dA methylation in the R.BspD6I recognition site on ss.BspD6I activity is analyzed. GENERAL SIGNIFICANCE The obtained results provide evidence that Nt.BspD6I coordinates the activity of R.BspD6I by strictly coupling of the bottom strand cleavage by ss.BspD6I to the top strand cleavage.
Collapse
|
5
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
6
|
Sekerina SA, Grishin AV, Riazanova AI, Artiukh RI, Rogulin EA, Iunusova AK, Oretskaia TS, Zheleznaia LA, Kubareva EA. [Oligomerization of site-specific nicking endonuclease BspD6I at high protein concentrations]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [PMID: 23189557 DOI: 10.1134/s1068162012040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ability of site-specific nickase BspD6I (Nt.BspD6I) to oligomerize at concentrations > or = 0.5 microM (> or = 0.035 mg/mL) is studied. Three states of Nt.BspD6I are registered via electrophoretic studies both in the presence and in the absence of DNA. Estimation of their molecular mass allows assigning them as a monomer, a dimer and a trimer. Both dimeric and monomeric Nt.BspD6I are shown to hydrolyze its DNA substrate with the identical specificity. Calculation of the electrostatic potential distribution on the Nt.BspD6I globule surface shows that the protein molecule is a dipole. The Nt. BspD6I oligomeric forms are likely to be the result of ionic protein interactions.
Collapse
|
7
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
8
|
Zheleznaya LA, Kachalova GS, Artyukh RI, Yunusova AK, Perevyazova TA, Matvienko NI. Nicking endonucleases. BIOCHEMISTRY (MOSCOW) 2010; 74:1457-66. [DOI: 10.1134/s0006297909130033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Too PHM, Zhu Z, Chan SH, Xu SY. Engineering Nt.BtsCI and Nb.BtsCI nicking enzymes and applications in generating long overhangs. Nucleic Acids Res 2009; 38:1294-303. [PMID: 19955230 PMCID: PMC2831314 DOI: 10.1093/nar/gkp1092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.
Collapse
|
10
|
Zhang P, Too PHM, Samuelson JC, Chan SH, Vincze T, Doucette S, Bäckström S, Potamousis KD, Schramm TM, Forrest D, Schwartz DC, Xu SY. Engineering BspQI nicking enzymes and application of N.BspQI in DNA labeling and production of single-strand DNA. Protein Expr Purif 2009; 69:226-34. [PMID: 19747545 DOI: 10.1016/j.pep.2009.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/26/2009] [Accepted: 09/04/2009] [Indexed: 11/30/2022]
Abstract
BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).
Collapse
Affiliation(s)
- Penghua Zhang
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit. J Mol Biol 2008; 384:489-502. [PMID: 18835275 DOI: 10.1016/j.jmb.2008.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/10/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
Abstract
The heterodimeric restriction endonuclease R.BspD6I from Bacillus species D6 recognizes a pseudosymmetric sequence and cuts both DNA strands outside the recognition sequence. The large subunit, Nt.BspD6I, acts as a type IIS site-specific monomeric nicking endonuclease. The isolated small subunit, ss.BspD6I, does not bind DNA and is not catalytically active. We solved the crystal structures of Nt.BspD6I and ss.BspD6I at high resolution. Nt.BspD6I consists of three domains, two of which exhibit structural similarity to the recognition and cleavage domains of FokI. ss.BspD6I has a fold similar to that of the cleavage domain of Nt.BspD6I, each containing a PD-(D/E)XK motif and a histidine as an additional putative catalytic residue. In contrast to the DNA-bound FokI structure, in which the cleavage domain is rotated away from the DNA, the crystal structure of Nt.BspD6I shows the recognition and cleavage domains in favorable orientations for interactions with DNA. Docking models of complexes of Nt.BspD6I and R.BspD6I with cognate DNA were constructed on the basis of structural similarity to individual domains of FokI, R.BpuJI and HindIII. A three-helix bundle forming an interdomain linker in Nt.BspD6I acts as a rigid spacer adjusting the orientations of the spatially separated domains to match the distance between the recognition and cleavage sites accurately.
Collapse
|
12
|
Xu SY, Zhu Z, Zhang P, Chan SH, Samuelson JC, Xiao J, Ingalls D, Wilson GG. Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI. Nucleic Acids Res 2007; 35:4608-18. [PMID: 17586812 PMCID: PMC1950550 DOI: 10.1093/nar/gkm481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 11/13/2022] Open
Abstract
BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (-/0) and GCAGTG (-/0). We refer to the single subunit, the bottom-strand nicking forms as 'hemidimers'. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-X(n)-EXK and a second non-canonical PD-X(n)-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/-1) and BsmI/Mva1269I (GAATGC 1/-1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | | | | | | | |
Collapse
|