1
|
Krasikova YS, Lavrik OI, Rechkunova NI. The XPA Protein-Life under Precise Control. Cells 2022; 11:cells11233723. [PMID: 36496984 PMCID: PMC9739396 DOI: 10.3390/cells11233723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
2
|
Feltes BC. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Protein Sci 2021; 30:2187-2205. [PMID: 34420242 DOI: 10.1002/pro.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
The seven xeroderma pigmentosum proteins (XPps), XPA-XPG, coordinate the nucleotide excision repair (NER) pathway, promoting the excision of DNA lesions caused by exposition to ionizing radiation, majorly from ultraviolet light. Significant efforts are made to investigate NER since mutations in any of the seven XPps may cause the xeroderma pigmentosum and trichothiodystrophy diseases. However, these proteins collaborate with other pivotal players in all known NER steps to accurately exert their purposes. Therefore, in the old and ever-evolving field of DNA repair, it is imperative to reexamine and describe their structures to understand NER properly. This work provides an up-to-date review of the protein structural aspects of the closest partners that directly interact and influence XPps: RAD23B, CETN2, DDB1, RPA (RPA70, 32, and 14), p8 (GTF2H5), and ERCC1. Structurally and functionally vital domains, regions, and critical residues are reexamined, providing structural lessons and perspectives about these indispensable proteins in the NER and other DNA repair pathways. By gathering all data related to the major human xeroderma pigmentosum-interacting proteins, this review will aid newcomers on the subject and guide structural and functional future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Rechkunova NI, Lavrik OI. Photoreactive DNA as a Tool to Study Replication Protein A Functioning in DNA Replication and Repair. Photochem Photobiol 2020; 96:440-449. [PMID: 32017119 DOI: 10.1111/php.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
Replication protein A (RPA), eukaryotic single-stranded DNA-binding protein, is a key player in multiple processes of DNA metabolism including DNA replication, recombination and DNA repair. Human RPA composed of subunits of 70-, 32- and 14-kDa binds ssDNA with high affinity and interacts specifically with multiple proteins. The RPA heterotrimer binds ssDNA in several modes, with occlusion lengths of 8-10, 13-22 and 30 nucleotides corresponding to global, transitional and elongated conformations of protein. Varying the structure of photoreactive DNA, the intermediates of different stages of DNA replication or DNA repair were designed and applied to identify positioning of the RPA subunits on the specific DNA structures. Using this approach, RPA interactions with various types of DNA structures attributed to replication and DNA repair intermediates were examined. This review is dedicated to blessed memory of Prof. Alain Favre who contributed to the development of photoreactive nucleotide derivatives and their application for the study of protein-nucleic acids interactions.
Collapse
Affiliation(s)
- Nadejda I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
da Silva Sergio LP, Mencalha AL, de Souza da Fonseca A, de Paoli F. DNA repair and genomic stability in lungs affected by acute injury. Biomed Pharmacother 2019; 119:109412. [PMID: 31514069 PMCID: PMC9170240 DOI: 10.1016/j.biopha.2019.109412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Acute pulmonary injury, or acute respiratory distress syndrome, has a high incidence in elderly individuals and high mortality in its most severe degree, becoming a challenge to public health due to pathophysiological complications and increased economic burden. Acute pulmonary injury can develop from sepsis, septic shock, and pancreatitis causing reduction of alveolar airspace due to hyperinflammatory response. Oxidative stress acts directly on the maintenance of inflammation, resulting in tissue injury, as well as inducing DNA damages. Once the DNA is damaged, enzymatic DNA repair mechanisms act on lesions in order to maintain genomic stability and, consequently, contribute to cell viability and homeostasis. Although palliative treatment based on mechanical ventilation and antibiotic using have a kind of efficacy, therapies based on modulation of DNA repair and genomic stability could be effective for improving repair and recovery of lung tissue in patients with acute pulmonary injury.
Collapse
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|
5
|
Zebian A, Shaito A, Mazurier F, Rezvani HR, Zibara K. XPC beyond nucleotide excision repair and skin cancers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108286. [DOI: 10.1016/j.mrrev.2019.108286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
|
6
|
Dolgova EV, Evdokimov AN, Proskurina AS, Efremov YR, Bayborodin SI, Potter EA, Popov AA, Petruseva IO, Lavrik OI, Bogachev SS. Double-Stranded DNA Fragments Bearing Unrepairable Lesions and Their Internalization into Mouse Krebs-2 Carcinoma Cells. Nucleic Acid Ther 2019; 29:278-290. [PMID: 31194620 DOI: 10.1089/nat.2019.0786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Murine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA. This adduct was shown to inhibit the cellular system of nucleotide excision repair while being resistant to excision by this DNA repair system. The basic parameters for this DNA probe internalization by the murine Krebs-2 tumor cells were characterized. Being incubated under regular conditions (60 min, 24°C, 500 μL of the incubation medium, in the dark), 0.35% ± 0.18% of the Krebs-2 ascites cells were shown to natively internalize modified DNA. The saturating amount of the modified DNA was detected to be 0.37 μg per 106 cells. For the similar unmodified DNA fragments, this ratio is 0.73 μg per 106 cells. Krebs-2 tumor cells were shown to be saturated internalizing either (190 ± 40) × 103 molecules of modified DNA or (1,000 ± 100) × 103 molecules of native DNA. On internalization, the fragments of DNA undergo partial and nonuniform hydrolysis of 3' ends followed by circularization. The degree of hydrolysis, assessed by sequencing of several clones with the insertion of specific PCR product, was 30-60 nucleotides.
Collapse
Affiliation(s)
- Evgeniya V Dolgova
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey N Evdokimov
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R Efremov
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey I Bayborodin
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey A Popov
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina O Petruseva
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga I Lavrik
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia.,Department of Physical Chemistry and Biotechnology, Altai State University, Barnaul, Russia
| | - Sergey S Bogachev
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Krasikova YS, Rechkunova NI, Maltseva EA, Lavrik OI. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair. PLoS One 2018; 13:e0190782. [PMID: 29320546 PMCID: PMC5761895 DOI: 10.1371/journal.pone.0190782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.
Collapse
Affiliation(s)
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | | | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
8
|
Sergio LPDS, de Paoli F, Mencalha AL, da Fonseca ADS. Chronic Obstructive Pulmonary Disease: From Injury to Genomic Stability. COPD 2017; 14:439-450. [DOI: 10.1080/15412555.2017.1332025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Teresópolis, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Krasikova YS, Rechkunova NI, Lavrik OI. Replication protein A as a major eukaryotic single-stranded DNA-binding protein and its role in DNA repair. Mol Biol 2016. [DOI: 10.1134/s0026893316030080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fadda E. Role of the XPA protein in the NER pathway: A perspective on the function of structural disorder in macromolecular assembly. Comput Struct Biotechnol J 2015; 14:78-85. [PMID: 26865925 PMCID: PMC4710682 DOI: 10.1016/j.csbj.2015.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Lack of structure is often an essential functional feature of protein domains. The coordination of macromolecular assemblies in DNA repair pathways is yet another task disordered protein regions are highly implicated in. Here I review the available experimental and computational data and within this context discuss the functional role of structure and disorder in one of the essential scaffolding proteins in the nucleotide excision repair (NER) pathway, namely Xeroderma pigmentosum complementation group A (XPA). From the analysis of the current knowledge, in addition to protein–protein docking and secondary structure prediction results presented for the first time herein, a mechanistic framework emerges, where XPA builds the NER pre-incision complex in a modular fashion, as “beads on a string”, where the protein–protein interaction “beads”, or modules, are interconnected by disordered link regions. This architecture is ideal to avoid the expected steric hindrance constraints of the DNA expanded bubble. Finally, the role of the XPA structural disorder in binding affinity modulation and in the sequential binding of NER core factors in the pre-incision complex is also discussed.
Collapse
Affiliation(s)
- Elisa Fadda
- Department of Chemistry, Maynooth University, Maynooth, Kildare, Ireland
| |
Collapse
|
11
|
Maltseva EA, Krasikova YS, Naegeli H, Lavrik OI, Rechkunova NI. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair. BIOCHEMISTRY (MOSCOW) 2015; 79:545-54. [PMID: 25100013 DOI: 10.1134/s000629791406008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E >> K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.
Collapse
Affiliation(s)
- E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | |
Collapse
|
12
|
Fomina EE, Pestryakov PE, Maltseva EA, Petruseva IO, Kretov DA, Ovchinnikov LP, Lavrik OI. Y-box binding protein 1 (YB-1) promotes detection of DNA bulky lesions by XPC-HR23B factor. BIOCHEMISTRY (MOSCOW) 2015; 80:219-27. [DOI: 10.1134/s000629791502008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Skosareva LV, Lebedeva NA, Lavrik OI, Rechkunova NI. Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons. Mol Biol 2013. [DOI: 10.1134/s002689331305018x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Evdokimov A, Petruseva I, Tsidulko A, Koroleva L, Serpokrylova I, Silnikov V, Lavrik O. New synthetic substrates of mammalian nucleotide excision repair system. Nucleic Acids Res 2013; 41:e123. [PMID: 23609543 PMCID: PMC3695498 DOI: 10.1093/nar/gkt301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications.
Collapse
Affiliation(s)
- Alexey Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
15
|
Krasikova YS, Rechkunova NI, Maltseva EA, Pestryakov PE, Petruseva IO, Sugasawa K, Chen X, Min JH, Lavrik OI. Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair. J Biol Chem 2013; 288:10936-47. [PMID: 23443653 DOI: 10.1074/jbc.m112.444026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. The interaction of these proteins with damaged DNA was analyzed using model DNA duplexes containing a single fluorescein-substituted dUMP analog as a lesion. An electrophoretic mobility shift assay revealed similarity between human and yeast proteins in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed by fluorescent depolarization measurements. XPC-RAD23B and Rad4-Rad23 proteins demonstrate approximately equal binding affinity to the damaged DNA duplex (K(D) ∼ (0.5 ± 0.1) and (0.6 ± 0.3) nM, respectively). Using photoreactive DNA containing 5-iodo-dUMP in defined positions, XPC/Rad4 location on damaged DNA was shown. Under conditions of equimolar binding to DNA both proteins exhibited the highest level of cross-links to 5I-dUMP located exactly opposite the damaged nucleotide. The positioning of the XPC and Rad4 proteins on damaged DNA by photocross-linking footprinting is consistent with x-ray analysis of the Rad4-DNA crystal complex. The identity of the XPC and Rad4 location illustrates the common principles of structure organization of DNA damage-scanning proteins from different Eukarya organisms.
Collapse
Affiliation(s)
- Yuliya S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 2013; 23:204-12. [PMID: 23352696 DOI: 10.1016/j.cub.2012.12.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nucleotide excision repair is a versatile DNA repair reaction that removes bulky adducts generated by environmental mutagens such as the UV spectrum of sunlight or chemical carcinogens. Current multistep models of this excision repair pathway accommodate its broad substrate repertoire but fail to explain the stringent selectivity toward damaged nucleotides among excess native DNA. To understand the mechanism of bulky lesion recognition, we postulated that it is necessary to analyze the function of xeroderma pigmentosum group D (XPD) protein beyond its well-known role in the unwinding of double-stranded DNA. RESULTS We engineered two new XPD mutants (Y192A and R196E), involving amino acid substitutions near its central protein pore, that confer defective DNA repair despite normal transcription. In situ fluorescence-based protein dynamics studies in living cells demonstrated that both new mutants were unable to recognize DNA damage and failed to form stable associations with lesion sites. However, when their biochemical properties were tested in the framework of an archaeal protein homolog, they both retained ATPase and DNA-unwinding activity. The outstanding difference versus the wild-type control was that their directional 5'-3' translocation along DNA was not stopped by a bulky lesion, and moreover, they were unable to build long-lived demarcation complexes at damaged sites. CONCLUSIONS By uncoupling for the first time the unwinding and damage sensor activities of XPD, we describe an unprecedented genome quality control process whereby a recognition pocket near the central DNA helicase pore scans individual substrate strands to capture base adducts.
Collapse
Affiliation(s)
- Nadine Mathieu
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Skosareva LV, Lebedeva NA, Rechkunova NI, Maltseva EA, Pestryakov PE, Lavrik OI. Interaction of nucleotide excision repair proteins with DNA containing bulky lesion and apurinic/apyrimidinic site. BIOCHEMISTRY (MOSCOW) 2012; 77:524-31. [PMID: 22813594 DOI: 10.1134/s0006297912050136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2'-deoxyuridine-5'-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3'- or 5'-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.
Collapse
Affiliation(s)
- L V Skosareva
- Institute of Chemical Biology and Fundamental Medicine, pr. Lavrentieva 8, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
18
|
Krasikova YS, Rechkunova NI, Maltseva EA, Craescu CT, Petruseva IO, Lavrik OI. Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA. BIOCHEMISTRY (MOSCOW) 2012; 77:346-53. [PMID: 22809153 DOI: 10.1134/s0006297912040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have examined the influence of centrin 2 (Cen2) on the interaction of nucleotide excision repair factors (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes bearing the dUMP derivative 5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2'-deoxyuridine-5'-monophosphate. The fluorescein residue linked to the nucleotide base imitates a bulky lesion of DNA. Cen2 stimulated the binding and increased the yield of DNA adducts with XPC-HR23b, a protein recognizing bulky damages in DNA. Stimulation of the binding was most pronounced in the presence of Mg(2+) and demonstrated a bell-shaped dependence on Cen2 concentration. The addition of Cen2 changed the stoichiometry of RPA-DNA complexes and diminished the yield of RPA-DNA covalent crosslinks. We have shown that Cen2 influences the binding of RPA and XPA with DNA, which results in formation of additional DNA-protein complexes possibly including Cen2. We have also found some evidence of direct contacts between Cen2 and DNA. These results in concert with the literature data suggest that Cen2 can be a regulatory element in the nucleotide excision repair system.
Collapse
Affiliation(s)
- Y S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva 8, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Bernauer AM, Yingling CM, Belinsky SA. HIF1α regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis 2012; 33:1187-92. [PMID: 22467238 DOI: 10.1093/carcin/bgs142] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Factors regulating nucleotide excision repair probably contribute to the heterogenous response of advanced stage lung cancer patients to drugs such as cisplatin. Studies to identify the genes in the nucleotide excision repair pathway most closely associated with resistance to cisplatin have not been conclusive. We hypothesized that Xeroderma pigmentosum complementation group A (XPA), because of its dual role in sensing and recruiting other DNA repair proteins to the damaged template, would be critical in defining sensitivity to cisplatin. Studies were conducted to identify factors regulating transcription of XPA, to assess its role in modulating sensitivity to cisplatin and its expression in primary lung tumors. Hypoxia-inducible factor 1 alpha (HIF1α) subunit was found to bind with strong affinity to a hypoxia response element sequence in the promoter of XPA. Modulating expression of HIF1α by small interfering RNA or cobalt chloride markedly reduced or increased transcription of XPA in lung cancer cell lines, respectively. Protein levels of XPA were strongly correlated with sensitivity to cisplatin (r = 0.88; P < 0.001) in cell lines and sensitivity could be increased by small interfering RNA depletion of XPA. Expression of XPA determined in 54 primary lung tumors was elevated on average 5.2-fold when compared with normal bronchial epithelial cells and correlated with levels of HIF1α (r = 0.58; P < 0.01). Together, these studies identify XPA as a novel target for regulation by HIF1α whose modulation could impact lung cancer therapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
20
|
Evdokimov AN, Petruseva IO, Pestryakov PE, Lavrik OI. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA. BIOCHEMISTRY (MOSCOW) 2011; 76:157-66. [PMID: 21568847 DOI: 10.1134/s0006297911010159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long linear DNA analogs of nucleotide excision repair (NER) substrates have been synthesized. They are 137-mer duplexes containing in their internal positions nucleotides with bulky substitutes imitating lesions with fluorochloroazidopyridyl and fluorescein groups introduced using spacer fragments at the 4N and 5C positions of dCMP and dUMP (Fap-dC- and Flu-dU-DNA) and DNA containing a (+)-cis-stereoisomer of benzo[a]pyrene-N2-deoxyguanidine (BP-dG-DNA, 131 bp). The interaction of the modified DNA duplexes with the proteins of NER-competent HeLa extract was investigated. The substrate properties of the model DNA in the reaction of specific excision were shown to vary in the series Fap-dC-DNA << Flu-dU-DNA < BP-dG-DNA. During the experiments on affinity modification of the proteins of NER-competent extract, Fap-dC-DNA (137 bp) containing a (32)P-label in the photoactive nucleotide demonstrated properties of a highly efficient and selective probe. The set of the main targets of labeling included polypeptides of the extract with the same values of apparent molecular weights (35-90 kDa) as when using the shorter (48 bp) Fap-dC-DNA. Besides, some of the extract proteins were shown capable of specific and effective interaction with the long analog of NER substrate. Electrophoretic mobility of these proteins coincided with the mobilities of DNA-binding subunits of XPC-HR23B and PARP1 (~127 and ~115 kDa, respectively). The 115-kDa target protein was identified as PARP1 using NAD+-based functional testing. The results suggest that the linear Fap-dC-DNA is an unrepairable substrate analog that can compete with effective NER substrates in the binding of the proteins responsible for lesion recognition and excision.
Collapse
Affiliation(s)
- A N Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
21
|
Rechkunova NI, Krasikova YS, Lavrik OI. Nucleotide excision repair: DNA damage recognition and preincision complex assembly. BIOCHEMISTRY (MOSCOW) 2011; 76:24-35. [PMID: 21568837 DOI: 10.1134/s0006297911010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
22
|
Han W, Kim KY, Yang SJ, Noh DY, Kang D, Kwack K. SNP-SNP interactions between DNA repair genes were associated with breast cancer risk in a Korean population. Cancer 2011; 118:594-602. [PMID: 21751184 DOI: 10.1002/cncr.26220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in nucleotide excision repair (NER) pathway genes may modulate DNA repair capacity and increase susceptibility to breast cancer (BC). A case-control study was conducted by evaluating genes involved in DNA repair to identify polymorphisms associated with BC. METHODS The 384 SNPs of 38 candidate genes were genotyped using the Illumina GoldenGate method. Genotypes were determined in a case-control study that consisted of 346 BC patients and 361 controls. Odds ratios and 95% confidence intervals were computed using logistic regression models. Multiple logistic regression models adjusted for age, family history of BC, and body mass index were used. RESULTS Gene-gene interaction analysis among the DNA repair pathway genes showed significant effects on BC risk. ERCC2 rs50872 (TC genotype) in combination with XPA rs2808668 (TC genotype) and rs1800975 (AG genotype) was strongly associated with an increased risk of BC (P = .0004 and .0002, P(Bonferroni) = .023 and .014, respectively). Moreover, the T-G (including rs2808668 and rs1800975) haplotype in XPA combined with the ERCC2 T allele in rs50872 carriers was also associated with additive risk effect of BC (odds ratios: 2.58, 2.62, and 3.49, respectively). CONCLUSION Genetic variation in DNA repair genes involved in NER mechanisms increased the risk of BC development. These results suggested that a stronger combined effect of SNPs via gene-gene interaction may help to predict BC risk.
Collapse
Affiliation(s)
- Wonshik Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 2010; 38:8083-94. [PMID: 20693538 PMCID: PMC3001049 DOI: 10.1093/nar/gkq649] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.
Collapse
Affiliation(s)
- Yuliya S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
24
|
Neher TM, Rechkunova NI, Lavrik OI, Turchi JJ. Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals contacts with both strands of the DNA duplex and spans the DNA adduct. Biochemistry 2010; 49:669-78. [PMID: 20028083 DOI: 10.1021/bi901575h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair (NER) is the main pathway used for the repair of bulky DNA adducts such as those caused by UV light exposure and the chemotherapeutic drug cisplatin. The xeroderma pigmentosum group C (XPC)-Rad23B complex is involved in the recognition of these bulky DNA adducts and initiates the global genomic nucleotide excision repair pathway (GG-NER). Photo-cross-linking experiments revealed that the human XPC-Rad23B complex makes direct contact with both the cisplatin-damaged DNA strand and the complementary undamaged strand of a duplex DNA substrate. Coupling photo-cross-linking with denaturation and immunoprecipitation of protein-DNA complexes, we identified the XPC subunit in complex with damaged DNA. While the interaction of the XPC subunit with DNA was direct, studies revealed that although Rad23B was found in complex with DNA, the Rad23B-DNA interaction was largely indirect via its interaction with XPC. Using site specific cross-linking, we determined that the XPC-Rad23B complex is preferentially cross-linked to the damaged DNA when the photoreactive FAP-dCMP (exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine 5'-monophosphate) analogue is located to the 5' side of the cisplatin-DNA adduct. When the FAP-dCMP analogue is located to the 3' side of the adduct, no difference in binding was detected between undamaged and damaged DNA. Collectively, these data suggest a model in which XPC-DNA interactions drive the damage recognition process contacting both the damaged and undamaged DNA strand. Preferential cross-linking 5' of the cisplatin-damaged site suggests that the XPC-Rad23B complex displays orientation specific binding to eventually impart directionality to the downstream binding and incision events relative to the site of DNA damage.
Collapse
Affiliation(s)
- Tracy M Neher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
25
|
Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem 2010; 50:251-277. [PMID: 20012586 DOI: 10.1007/978-90-481-3471-7_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | |
Collapse
|