1
|
Ko S, Kim J, Lim J, Lee SM, Park JY, Woo J, Scott-Nevros ZK, Kim JR, Yoon H, Kim D. Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. mSystems 2024; 9:e0094323. [PMID: 38085058 PMCID: PMC10871167 DOI: 10.1128/msystems.00943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures.
Collapse
Affiliation(s)
- Seyoung Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaewon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Zoe K. Scott-Nevros
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jong R. Kim
- School of Engineering and Digital Sciences, Nazarbayev University, Astan, Kazakhstan
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
2
|
Resistance characteristics of CTX-M type Shigella flexneri in China. Biosci Rep 2019; 39:BSR20191741. [PMID: 31519769 PMCID: PMC6757185 DOI: 10.1042/bsr20191741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
The present study was to identify the drug resistance, resistance mechanism and the extended-spectrum β-lactamase (ESBLs) genotypes of Shigella flexneri (S. flexneri) in Jinan. Susceptibility tests were performed by MIC-determination. The genotypes of β-lactamase were identified using PCR and DNA sequencing. The resistance transfer ability of the ESBL-producing strains was examined by conjugation tests. A total of 105 S. flexneri isolates were collected, and 34 (32.4%) were ESBL-producing isolates. All ESBL-producing isolates were susceptible to cefoxitin and imipenem, and 35.3% isolates were resistant to ciprofloxacin. ESBL-producing isolates showed high level resistant to ampicillin (100%), cefotaxime (100%), tetracycline (100%), chloramphenicol (100%), trimethoprim/sulfamethoxazole (100%), ceftazidime (73.5%) and cefepime (73.5%). Three types of β-lactamase genes (blaTEM, blaOXA and blaCTX-M) were identified in all ESBL-producing isolates, and the genotypes were confirmed as blaTEM-1 (23/34), blaOXA-30 (34/34), blaCTX-M-14 (9/34) and blaCTX-M-15 (25/34) by sequencing. In conclusion, the Shigella strains isolated in Jinan are cross-resistant and multi-drug resistant. The main genotypes of ESBLs are CTX-M-14 and CTX-M-15.
Collapse
|
3
|
Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 2018; 10:347-362. [PMID: 29525835 PMCID: PMC5899746 DOI: 10.1007/s12551-018-0404-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex 'nanomachines' that drive survival of bacterial cells in antibiotic environments.
Collapse
Affiliation(s)
- Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK
| |
Collapse
|
4
|
Wang HY, Yoo G, Kim J, Uh Y, Song W, Kim JB, Lee H. Development of a Rapid Reverse Blot Hybridization Assay for Detection of Clinically Relevant Antibiotic Resistance Genes in Blood Cultures Testing Positive for Gram-Negative Bacteria. Front Microbiol 2017; 8:185. [PMID: 28232823 PMCID: PMC5299004 DOI: 10.3389/fmicb.2017.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
Rapid and accurate identification of the causative pathogens of bloodstream infections is crucial for the prompt initiation of appropriate antimicrobial therapy to decrease the related morbidity and mortality rates. The aim of this study was to evaluate the performance of a newly developed PCR-reverse blot hybridization assay (REBA) for the rapid detection of Gram-negative bacteria (GNB) and their extended-spectrum β-lactamase (ESBL), AmpC β-lactamase, and carbapenemase resistance genes directly from the blood culture bottles. The REBA-EAC (ESBL, AmpC β-lactamase, carbapenemase) assay was performed on 327 isolates that were confirmed to have an ESBL producer phenotype, 200 positive blood culture (PBCs) specimens, and 200 negative blood culture specimens. The concordance rate between the results of REBA-EAC assay and ESBL phenotypic test was 94.2%. The sensitivity, specificity, positive predictive value, and negative predictive value of the REBA-EAC assay for GNB identification in blood culture specimens were 100% (95% CI 0.938–1.000, P < 0.001), 100% (95% CI 0.986–1.000, P < 0.001), 100% (95% CI 0.938–1.000, P < 0.001), and 100% (95% CI 0.986–1.000, P < 0.001), respectively. All 17 EAC-producing GNB isolates from the 73 PBCs were detected by the REBA-EAC assay. The REBA-EAC assay allowed easy differentiation between EAC and non-EAC genes in all isolates. Moreover, the REBA-EAC assay was a rapid and reliable method for identifying GNB and their β-lactamase resistance genes in PBCs. Thus, this assay may provide essential information for accelerating therapeutic decisions to achieve earlier appropriate antibiotic treatment during the acute phase of bloodstream infection.
Collapse
Affiliation(s)
- Hye-Young Wang
- Optipharm M&D, Inc., Wonju Eco Environmental Technology Center Wonju, Gangwon, South Korea
| | - Gilsung Yoo
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, South Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine Seoul, South Korea
| | - Jong Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University Wonju, South Korea
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University Wonju, South Korea
| |
Collapse
|
5
|
Everaert A, Coenye T. Effect of β-Lactamase inhibitors on in vitro activity of β-Lactam antibiotics against Burkholderia cepacia complex species. Antimicrob Resist Infect Control 2016; 5:44. [PMID: 27895902 PMCID: PMC5111247 DOI: 10.1186/s13756-016-0142-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria belonging to the Burkholderia cepacia complex (Bcc) are an important cause of chronic respiratory tract infections in cystic fibrosis patients. Intrinsic resistance to a wide range of antimicrobial agents, including a variety of β-lactam antibiotics, is frequently observed in Bcc strains. Resistance to β-lactams is most commonly mediated by efflux pumps, alterations in penicillin-binding proteins or the expression of β-lactamases. β-lactamase inhibitors are able to restore the in vitro activity of β-lactam molecules against a variety of Gram-negative species, but the effect of these inhibitors on the activity of β-lactam treatment against Bcc species is still poorly investigated. METHODS In the present study, the susceptibility of a panel of Bcc strains was determined towards the β-lactam antibiotics ceftazidime, meropenem, amoxicillin, cefoxitin, cefepime and aztreonam; alone or in combination with a β-lactamase inhibitor (clavulanic acid, sulbactam, tazobactam and avibactam). Consequently, β-lactamase activity was determined for active β-lactam/β-lactamase inhibitor combinations. RESULTS Clavulanic acid had no effect on minimum inhibitory concentrations, but addition of sulbactam, tazobactam or avibactam to ceftazidime, amoxicillin, cefoxitin, cefepime or aztreonam leads to increased susceptibility (at least 4-fold MIC-decrease) in some Bcc strains. The effect of β-lactamase inhibitors on β-lactamase activity is both strain- and/or antibiotic-dependent, and other mechanisms of β-lactam resistance (besides production of β-lactamases) appear to be important. CONCLUSIONS Considerable differences in susceptibility of Bcc strains to β-lactam antibiotics were observed. Results obtained in the present study suggest that resistance of Bcc strains against β-lactam antibiotics is mediated by both β-lactamases and non-β-lactamase-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Annelien Everaert
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Han ST, Fei Y, Huang JY, Xu M, Chen LC, Liao DJ, Tan YJ. Establishment of a Simple and Quick Method for Detecting Extended-Spectrum β-Lactamase (ESBL) Genes in Bacteria. J Biomol Tech 2016; 27:132-137. [PMID: 27672351 DOI: 10.7171/jbt.16-2704-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extended-spectrum β-lactamase (ESBL) genes that render bacteria resistant to antibiotics are commonly detected using phenotype testing, which is time consuming and not sufficiently accurate. To establish a better method, we used phenotype testing to identify ESBL-positive bacterial strains and conducted PCR to screen for TEM (named after the patient Temoneira who provided the first sample), sulfhydryl reagent variable (SHV), cefotaxime (CTX)-M-1, and CTX-M-9, the 4 most common ESBL types and subtypes. We then performed multiplex PCR with 1 primer containing a biotin and hybridized the PCR products with gene-specific probes that were coupled with microbeads and coated with a specific fluorescence. The hybrids were linked to streptavidin-R-phycoerythrins (SA-PEs) and run through a flow cytometer, which sorted the fluorescently dyed microbeads and quantified the PEs. The results from single PCR, multiplex PCR, and cytometry were consistent with each other. We used this method to test 169 clinical specimens that had been determined for phenotypes and found 154 positive for genotypes, including 30 of the 45 samples that were negative for phenotypes. The CTX-M genotype tests alone, counting both positive and negative cases, showed 99.41% (168/169) consistency with the ESBL phenotype test. Thus, we have established a multiplex-PCR system as a simple and quick method that is high throughput and accurate for detecting 4 common ESBL types and subtypes.
Collapse
Affiliation(s)
- Song-Tao Han
- Clinical Laboratory, Baiyun Hospital affiliated to Guizhou Medical University Hospital, Guiyang 550058, P.R. China;; Central Laboratory, Guizhou Medical University Hospital, Guiyang 550004, P.R. China
| | - Ying Fei
- Department of Microbiology and Immunology, Guizhou Medical University Hospital, Guiyang 550004, P.R. China
| | - Jin-You Huang
- Clinical Laboratory, Baiyun Hospital affiliated to Guizhou Medical University Hospital, Guiyang 550058, P.R. China
| | - Mei Xu
- Clinical Laboratory, Baiyun Hospital affiliated to Guizhou Medical University Hospital, Guiyang 550058, P.R. China
| | - Li-Chan Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA; and
| | - D Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, P.R. China
| | - Yu-Jie Tan
- Clinical Laboratory, Baiyun Hospital affiliated to Guizhou Medical University Hospital, Guiyang 550058, P.R. China;; Central Laboratory, Guizhou Medical University Hospital, Guiyang 550004, P.R. China
| |
Collapse
|
7
|
Detection of Class 1, 2, and 3 Integrons Among Klebsiella pneumoniae Isolated from Children in Tehran Hospitals. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2013. [DOI: 10.5812/pedinfect.11845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Afshari A, Schrenzel J, Ieven M, Harbarth S. Bench-to-bedside review: Rapid molecular diagnostics for bloodstream infection--a new frontier? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:222. [PMID: 22647543 PMCID: PMC3580598 DOI: 10.1186/cc11202] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among critically ill patients, the diagnosis of bloodstream infection poses a major challenge. Current standard bacterial identification based on blood culture platforms is intrinsically time-consuming and slow. The continuous evolvement of molecular techniques has the potential of providing a faster, more sensitive and direct identification of causative pathogens without prior need for cultivation. This may ultimately impact clinical decision-making and antimicrobial treatment. This review summarises the currently available technologies, their strengths and limitations and the obstacles that have to be overcome in order to develop a satisfactory bedside point-of-care diagnostic tool for detection of bloodstream infection.
Collapse
|
9
|
Schulze H, Barl T, Vase H, Baier S, Thomas P, Giraud G, Crain J, Bachmann TT. Enzymatic on-chip enhancement for high resolution genotyping DNA microarrays. Anal Chem 2012; 84:5080-4. [PMID: 22548504 DOI: 10.1021/ac3007945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance among pathogenic microorganisms is emerging as a major human healthcare concern. While there are a variety of resistance mechanisms, many can be related to single nucleotide polymorphisms and for which DNA microarrays have been widely deployed in bacterial genotyping. However, genotyping by means of allele-specific hybridization can suffer from the drawback that oligonucleotide probes with different nucleotide composition have varying thermodynamic parameters. This results in unpredictable hybridization behavior of mismatch probes. Consequently, the degree of discrimination between perfect match and mismatch probes is insufficient in some cases. We report here an on-chip enzymatic procedure to improve this discrimination in which false-positive hybrids are selectively digested. We find that the application of CEL1 Surveyor nuclease, a mismatch-specific endonuclease, significantly enhances the discrimination fidelity, as demonstrated here on a microarray for the identification of variants of carbapenem resistant Klebsiella pneumoniae carbapenemases and monitored by end point detection of fluorescence intensity. Further fundamental investigations applying total internal reflection fluorescence detection for kinetic real-time measurements confirmed the enzymatic enhancement for SNP discrimination.
Collapse
Affiliation(s)
- Holger Schulze
- Division of Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaatz M, Schulze H, Ciani I, Lisdat F, Mount AR, Bachmann TT. Alkaline phosphatase enzymatic signal amplification for fast, sensitive impedimetric DNA detection. Analyst 2012; 137:59-63. [DOI: 10.1039/c1an15767a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|