1
|
Petushkov IV, Aralov AV, Ivanov IA, Baranov MS, Zatsepin TS, Kulbachinskiy AV. Effect of 8-Oxo-1, N6-Ethenoadenine Derivatives on the Activity of RNA Polymerases from SARS-CoV-2 and Escherichia coli. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2263-2273. [PMID: 39865038 DOI: 10.1134/s0006297924120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,N6-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn2+ ions. Escherichia coli RNA polymerase incorporated oxo-εATP opposite A residues in the template DNA strand. The presence of oxo-εA instead of adenine in the template DNA strand completely stopped transcription at the modified nucleotide. At the same time, oxo-εATP did not suppress RNA synthesis by both RNA polymerases in the presence of unmodified nucleotides. Therefore, the oxo-εA modification significantly disrupts nucleotide base pairing during RNA synthesis by RNA polymerases of different classes, and the corresponding nucleotide derivatives cannot be used as potential antiviral or antibacterial transcription inhibitors.
Collapse
Affiliation(s)
- Ivan V Petushkov
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- RUDN University, Moscow, 117198, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Organicum LLC, Moscow, 127486, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Timofey S Zatsepin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Kulbachinskiy
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
2
|
Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Biochimie 2020; 170:57-64. [DOI: 10.1016/j.biochi.2019.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
|
3
|
Shikalov AB, Esyunina DM, Pupov DV, Kulbachinskiy AV, Petushkov IV. The σ24 Subunit of Escherichia coli RNA Polymerase Can Induce Transcriptional Pausing in vitro. BIOCHEMISTRY (MOSCOW) 2019; 84:426-434. [DOI: 10.1134/s0006297919040102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Petushkov I, Esyunina D, Kulbachinskiy A. Possible roles of σ-dependent RNA polymerase pausing in transcription regulation. RNA Biol 2017; 14:1678-1682. [PMID: 28816625 DOI: 10.1080/15476286.2017.1356568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The σ subunit of bacterial RNA polymerase is required for promoter recognition during transcription initiation but may also regulate transcription elongation. The principal σ70 subunit of Escherichia coli was shown to travel with RNA polymerase and induce transcriptional pausing at promoter-like motifs, with potential regulatory output. We recently demonstrated that an alternative σ38 subunit can also induce RNA polymerase pausing. Here, we outline proposed regulatory roles of σ-dependent pausing in bacteria and discuss possible interplay between alternative σ variants and regulatory factors during transcription elongation.
Collapse
Affiliation(s)
- Ivan Petushkov
- a Laboratory of Molecular Genetics of Microorganisms, Institute of Molecular Genetics , Russian Academy of Sciences , Moscow , Russia.,b Molecular Biology Department, Biological Faculty , Moscow State University , Moscow , Russia
| | - Daria Esyunina
- a Laboratory of Molecular Genetics of Microorganisms, Institute of Molecular Genetics , Russian Academy of Sciences , Moscow , Russia
| | - Andrey Kulbachinskiy
- a Laboratory of Molecular Genetics of Microorganisms, Institute of Molecular Genetics , Russian Academy of Sciences , Moscow , Russia.,b Molecular Biology Department, Biological Faculty , Moscow State University , Moscow , Russia
| |
Collapse
|
5
|
Petushkov I, Esyunina D, Kulbachinskiy A. σ38-dependent promoter-proximal pausing by bacterial RNA polymerase. Nucleic Acids Res 2017; 45:3006-3016. [PMID: 27928053 PMCID: PMC5389655 DOI: 10.1093/nar/gkw1213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 11/24/2022] Open
Abstract
Transcription initiation by bacterial RNA polymerase (RNAP) requires a variable σ subunit that directs it to promoters for site-specific priming of RNA synthesis. The principal σ subunit responsible for expression of house-keeping genes can bind the transcription elongation complex after initiation and induce RNAP pausing through specific interactions with promoter-like motifs in transcribed DNA. We show that the stationary phase and stress response σ38 subunit can also induce pausing by Escherichia coli RNAP on DNA templates containing promoter-like motifs in the transcribed regions. The pausing depends on σ38 contacts with the DNA template and RNAP core enzyme and results in formation of backtracked transcription elongation complexes, which can be reactivated by Gre factors that induce RNA cleavage by RNAP. Our data suggest that σ38 can bind the transcription elongation complex in trans but likely acts in cis during transcription initiation, by staying bound to RNAP and recognizing promoter-proximal pause signals. Analysis of σ38-dependent promoters reveals that a substantial fraction of them contain potential pause-inducing motifs, suggesting that σ38-depended pausing may be a common phenomenon in bacterial transcription.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Molecular Biology Department, Biological Faculty, Moscow State University, Moscow 119991, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Molecular Biology Department, Biological Faculty, Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Agapov A, Olina A, Esyunina D, Kulbachinskiy A. Gfh factors and NusA cooperate to stimulate transcriptional pausing and termination. FEBS Lett 2017; 591:946-953. [PMID: 28236657 DOI: 10.1002/1873-3468.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/12/2017] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
Lineage-specific Gfh factors from the radioresistant bacterium Deinococcus radiodurans, which bind within the secondary channel of RNA polymerase, stimulate transcriptional pausing at a wide range of pause signals (elemental, hairpin-dependent, post-translocated, backtracking-dependent, and consensus pauses) and increase intrinsic termination. Universal bacterial factor NusA, which binds near the RNA exit channel, enhances the effects of Gfh factors on termination and hairpin-dependent pausing but do not act on other pause sites. It is proposed that NusA and Gfh target different steps in the pausing pathway and may act together to regulate transcription under stress conditions. Thus, transcription factors that interact with nascent RNA in the RNA exit channel can communicate with secondary channel regulators to modulate RNA polymerase activities.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| | - Anna Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Plant Physiology, Biological Faculty, Moscow State University, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| |
Collapse
|