1
|
Xu P, Jia M, Yan J, Yuan X, Yu W, Zhou Z, Fang H, Gao F, Shen L. Determining Mitochondrial 3243A>G Heteroplasmy Using an ARMS-ddPCR Strategy. Am J Clin Pathol 2022; 157:664-677. [PMID: 34698344 DOI: 10.1093/ajcp/aqab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/04/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Determining mitochondrial DNA (mtDNA) A-to-G substitution at nucleotide 3243 (m.3243A>G) heteroplasmy is essential for both precision diagnosis of m.3243A>G-associated mitochondrial disease and genetic counseling. Precise determination of m.3243A>G heteroplasmy is challenging, however, without appropriate strategies to accommodate heteroplasmic levels ranging from 1% to 100% in samples carrying thousands to millions of mtDNA copies. METHODS We used a combined strategy of amplification-refractory mutation system-quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital PCR (ddPCR) to determine m.3243A>G heteroplasmy. Primers were specifically designed and screened for both ARMS-qPCR and ddPCR to determine m.3243A>G heteroplasmy. An optimized ARMS-qPCR-ddPCR-based strategy was established using artificial standards, with different mixtures of m.3243A-containing and m.3243G-containing plasmids and further tested using clinical samples containing the m.3243A>G mutation. RESULTS One of 20 primer pairs designed in the study was omitted for ARMS-qPCR-ddPCR strategy application according to criteria of 85% to 110%, R2> 0.98 amplification efficiency, melt curve with a single clear peak, and specificity for m.3243A and m.3243G artificial standards (|CtWt-CtMut|max). Using plasmid standards with various m.3243A>G heteroplasmy (1%-100%) at low, mid, and high copy numbers (3,000, 104, and 105-107, respectively) and DNA from the blood of 20 patients carrying m.3243A>G with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, we found that ARMS-qPCR was reliable for determining m.3243A>G at 3% to 100% for low copy number and 1% to 100% for mid to high copy number samples. Meanwhile, ddPCR was reliable for determining m.3243A>G at 1% to 100% at low to mid copy number samples. CONCLUSIONS An ARMS-qPCR-ddPCR-based strategy was successfully established for precise determination of m.3243A>G heteroplasmy in complex clinical samples.
Collapse
Affiliation(s)
- Pu Xu
- Laboratory Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Manli Jia
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jimei Yan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangshu Yuan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weidong Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhuohua Zhou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hezhi Fang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feng Gao
- Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lijun Shen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Hiraki N, Tanaka TD, Yoshimura M. A Man With Left Ventricular Hypertrophy. JAMA Cardiol 2021; 7:225-226. [PMID: 34935854 DOI: 10.1001/jamacardio.2021.5144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Nana Hiraki
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshikazu D Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Shimura M, Onuki T, Sugiyama Y, Matsuhashi T, Ebihara T, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Nitta KR, Imai-Okazaki A, Yatsuka Y, Kishita Y, Ohtake A, Okazaki Y, Murayama K. Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453G > A. Mitochondrion 2021; 63:1-8. [PMID: 34933128 DOI: 10.1016/j.mito.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The m.14453G > A mutation in MT-ND6 has been described in a few patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes or Leigh syndrome.However, the clinical spectrum and molecular characteristics are unclear.Here, we present four infantile-onset patients with m.14453G > A-associated Leigh syndrome. All four patients had brainstem lesions with basal ganglia lesions, and two patients had cardiac manifestations. Decreased ND6 protein expression and immunoreactivity were observed in patient-derived samples. There was no clear correlation between heteroplasmy levels and onset age or between heteroplasmy levels and phenotype; however, infantile onset was associated with Leigh syndrome.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takanori Onuki
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tetsuro Matsuhashi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Makiko Tajika
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan; Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
4
|
Schubert AD, Channah Broner E, Agrawal N, London N, Pearson A, Gupta A, Wali N, Seiwert TY, Wheelan S, Lingen M, Macleod K, Allen H, Chatterjee A, Vassiliki S, Gaykalova D, Hoque MO, Sidransky D, Suresh K, Izumchenko E. Somatic mitochondrial mutation discovery using ultra-deep sequencing of the mitochondrial genome reveals spatial tumor heterogeneity in head and neck squamous cell carcinoma. Cancer Lett 2020; 471:49-60. [PMID: 31830557 PMCID: PMC6980748 DOI: 10.1016/j.canlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been linked to risk, progression, and treatment response of head and neck squamous cell carcinoma (HNSCC). Due to their clonal nature and high copy number, mitochondrial mutations could serve as powerful molecular markers for detection of cancer cells in bodily fluids, surgical margins, biopsies and lymph node (LN) metastasis, especially at sites where tumor involvement is not histologically apparent. Despite a pressing need for high-throughput, cost-effective mtDNA mutation profiling system, current methods for library preparation are still imperfect for detection of low prevalence heteroplasmic mutations. To this end, we have designed an ultra-deep amplicon-based sequencing library preparation approach that covers the entire mitochondrial genome. We sequenced mtDNA in 28 HNSCCs, matched LNs, surgical margins and bodily fluids, and applied multiregional sequencing approach on 14 primary tumors. Our results demonstrate that this quick, sensitive and cost-efficient method allows obtaining a snapshot on the mitochondrial heterogeneity, and can be used for detection of low frequency tumor-associated mtDNA mutations in LNs, sputum and serum specimens. These findings provide the foundation for using mitochondrial sequencing for risk assessment, early detection, and tumor surveillance.
Collapse
Affiliation(s)
- Adrian D Schubert
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall London
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alexander Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Neha Wali
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Sarah Wheelan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Kay Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Hailey Allen
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Saloura Vassiliki
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daria Gaykalova
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mohammad O Hoque
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine. Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Mazunin IO, Volodko NV. [Leber hereditary optic neuropathy]. Vestn Oftalmol 2018; 134:92-97. [PMID: 29771891 DOI: 10.17116/oftalma2018134292-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leber hereditary optic neuropathy is characterized by bilateral, painless loss of vision in children and young adults (generally up to 25 years old). Since its first description in 1871, the understanding of its etiology and pathogenesis has improved considerably. The article considers Leber neuropathy from the points of view of ophthalmology, neurology and molecular genetics, and presents data on experimental treatment methods, one of which is undergoing clinical trial.
Collapse
Affiliation(s)
- I O Mazunin
- Immanuel Kant Baltic Federal University, 14 Nevskogo St., Kaliningrad, Russian Federation, 236016
| | - N V Volodko
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, Canada, T6G 2R3
| |
Collapse
|