1
|
Investigating Cancerous Exosomes’ Effects on CD8+ T-Cell IL-2 Production in a 3D Unidirectional Flow Bioreactor Using 3D Printed, RGD-Functionalized PLLA Scaffolds. J Funct Biomater 2022; 13:jfb13010030. [PMID: 35323230 PMCID: PMC8950614 DOI: 10.3390/jfb13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.
Collapse
|
2
|
Zhang X, Yang L, Kong M, Ma J, Wei Y. Development of a prognostic signature of patients with esophagus adenocarcinoma by using immune-related genes. BMC Bioinformatics 2021; 22:536. [PMID: 34724890 PMCID: PMC8559413 DOI: 10.1186/s12859-021-04456-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal adenocarcinoma (EAC) is an aggressive malignancy with a poor prognosis. The immune-related genes (IRGs) are crucial to immunocytes tumor infiltration. This study aimed to construct a IRG-related prediction signature in EAC. Methods The related data of EAC patients and IRGs were obtained from the TCGA and ImmPort database, respectively. The cox regression analysis constructed the prediction signature and explored the transcription factors regulatory network through the Cistrome database. TIMER database and CIBERSORT analytical tool were utilized to explore the immunocytes infiltration analysis. Results The prediction signature with 12 IRGs (ADRM1, CXCL1, SEMG1, CCL26, CCL24, AREG, IL23A, UCN2, FGFR4, IL17RB, TNFRSF11A, and TNFRSF21) was constructed. Overall survival (OS) curves indicate that the survival rate of the high-risk group is significantly shorter than the low-risk group (P = 7.26e−07), and the AUC of 1-, 3- and 5- year survival prediction rates is 0.871, 0.924, and 0.961, respectively. Compared with traditional features, the ROC curve of the risk score in the EAC patients (0.967) is significant than T (0.57), N (0.738), M (0.568), and Stage (0.768). Moreover, multivariate Cox analysis and Nomogram of risk score are indicated that the 1-year and 3-year survival rates of patients are accurate by the combined analysis of the risk score, Sex, M stage, and Stage (The AUC of 1- and 3-years are 0.911, and 0.853). Conclusion The 12 prognosis-related IRGs might be promising therapeutic targets for EAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04456-2.
Collapse
Affiliation(s)
- Xiangxin Zhang
- Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Thoracic Surgery, Shandong Second Provincial General Hospital, Shandong ENT Hospital, Jinan, Shandong, China
| | - Liu Yang
- Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Shandong Cancer Institute (Shandong Cancer Hospital), Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Kong
- Department of Thoracic Surgery, Shandong Second Provincial General Hospital, Shandong ENT Hospital, Jinan, Shandong, China
| | - Jian Ma
- Shandong Cancer Institute (Shandong Cancer Hospital), Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yutao Wei
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong, China.
| |
Collapse
|
3
|
Tang Y, Hu Y, Wang J, Zeng Z. A novel risk score based on a combined signature of 10 immune system genes to predict bladder cancer prognosis. Int Immunopharmacol 2020; 87:106851. [PMID: 32763782 DOI: 10.1016/j.intimp.2020.106851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BC) is a common internal malignant tumor with a poor prognosis worldwide. There is an urgent need to better understand the pathogenesis and progression of BC and to find useful biomarkers for diagnosis and prognosis. This study was aimed at developing a potential immunogenomic prognostic signature for BC patients. To identify possible immune-system-related genes (IRGs) whose parameters predict the survival of BC patients, we chose 371 BC patients and analyzed differentially expressed IRGs from The Cancer Genome Atlas (TCGA) datasets. We then derived a 10-IRG formula, including MMP9, RBP7, PDGFRA, AHNAK, OAS1, OLR1, RAC3, SLIT2, IGF1, and AGTR1, to estimate BC prognosis. To validate the mRNA levels of these IRGs, we performed quantitative PCR and found that the expression of these genes almost matched the corresponding mRNA expression levels in TCGA. Furthermore, we validated the prognostic value of the new risk model using two external datasets from Gene Expression Omnibus: GSE13507 (n = 165) and GSE32894 (n = 224). Our data pointed to a significant correlation between the risk model and patients' prognosis. Bioinformatic analysis revealed that products of the IRGs have possible effects on tumor immune processes such as an inflammatory response and cytokine-cytokine receptor interaction. Finally, assessment of the clinical value of the immune-system-based risk signature showed that several of these IRGs were differentially expressed between patients with different clinical characteristics: a high risk score positively correlated with female sex, advanced tumor stage, more advanced T stage, and lymph node metastasis. This immunogenomic signature may represents a reliable prognostic tool for BC and can help to design an individualized immunotherapy.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yangyang Hu
- Department of Pharmacology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Chen Y, Chen W, Dai X, Zhang C, Zhang Q, Lu J. Identification of the collagen family as prognostic biomarkers and immune-associated targets in gastric cancer. Int Immunopharmacol 2020; 87:106798. [PMID: 32693357 DOI: 10.1016/j.intimp.2020.106798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gastric cancer has extremely high morbidity and mortality. Currently, it is lack of effective biomarkers and therapeutic targets for guiding clinical treatment. In this study, we aimed to identify novel biomarkers and therapeutic targets for gastric cancer. METHODS Differentially expressed genes (DEGs) between gastric cancer and normal tissues were obtained from Gene Expression Omnibus (GEO). Core genes were identified by constructing protein-protein interaction network of DEGs. The expression of core genes was verified in Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and clinical samples. Further, the mutation, DNA methylation, prognostic value, and immune infiltration of core genes were validated by cBioPortal, MethSurv, Kaplan-Meier plotter, and Tumor Immune Estimation Resource (TIMER) databases. Additionally, drug response analysis was performed by Cancer Therapy Response Portal (CTRP). RESULTS A total of seven collagen family members were identified as core genes among upregulated genes. And copy number amplification may be involved in the upregulation of COL1A1 and COL1A2. Importantly, the collagen family was associated with the poor prognosis of patients with metastasis. Among them, COL1A1 had a higher hazard ratio (HR) for overall survival than other members (HR = 2.33). The correlation between DNA methylation levels at CpG sites of collagen family members and the prognosis was verified in gastric cancer. Besides, collagen family expression was positively correlated with macrophages infiltration and the expression of M2 macrophages markers. Further, collagen expression was related to the sensitivity and resistance of gastric cancer cell lines to certain drugs. CONCLUSIONS The collagen family, especially COL1A1, COL1A2, and COL12A1, may act as potential prognostic biomarkers and immune-associated therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province 450003, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
5
|
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response. Int J Mol Sci 2019; 21:ijms21010169. [PMID: 31881743 PMCID: PMC6981480 DOI: 10.3390/ijms21010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
- Correspondence: ; Tel.: +01-336-716-2234
| |
Collapse
|
6
|
Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cell Mol Immunol 2019; 17:13-26. [PMID: 31844141 DOI: 10.1038/s41423-019-0341-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The innate immune sensing pathways play critical roles in the defense against pathogen infection, but their roles in cancer immunosurveillance and cancer therapies are less defined. We propose that defective innate immune sensing inside the tumor microenvironment might limit T-cell responses to immunotherapy. A recent mechanistic understanding of conventional therapies revealed that both innate immune sensing and T-cell responses are essential for optimal antitumor efficacy. T-cell-based immunotherapy, particularly immune checkpoint blockade, has achieved great success in reactivating antitumor immune responses to lead to tumor regression, but only in a small fraction of patients. Therefore, incorporating conventional therapy that can increase innate sensing and immunotherapy should lead to promising strategies for cancer patients. Here, we review the innate sensing pathways related to cancer initiation/progression and therapies, summarize the recent key findings in innate immune sensing related to conventional therapies, evaluate current combination strategies, and highlight the potential issues of combinational therapies in terms of antitumor efficacy and toxicities.
Collapse
|
7
|
Barros FM, Carneiro F, Machado JC, Melo SA. Exosomes and Immune Response in Cancer: Friends or Foes? Front Immunol 2018; 9:730. [PMID: 29696022 PMCID: PMC5904196 DOI: 10.3389/fimmu.2018.00730] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Exosomes are a type of extracellular vesicle whose study has grown exponentially in recent years. This led to the understanding that these structures, far from being inert waste by-products of cellular functioning, are active players in intercellular communication mechanisms, including in the interactions between cancer cells and the immune system. The deep comprehension of the crosstalk between tumors and the immune systems of their hosts has gained more and more importance, as immunotherapeutic techniques have emerged as viable options for several types of cancer. In this review, we present a comprehensive, updated, and elucidative review of the current knowledge on the functions played by the exosomes in this crosstalk. The roles of these vesicles in tumor antigen presentation, immune activation, and immunosuppression are approached as the relevant interactions between exosomes and the complement system. The last section of this review is reserved for the exploration of the results from the first phase I to II clinical trials of exosomes-based cell-free cancer vaccines.
Collapse
Affiliation(s)
| | - Fatima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Jose C Machado
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Sónia A Melo
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| |
Collapse
|