1
|
Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med 2024; 24:142. [PMID: 38958690 PMCID: PMC11222192 DOI: 10.1007/s10238-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
This comprehensive exploration delves into the pivotal role of microRNAs (miRNAs) within the intricate tapestry of cellular regulation. As potent orchestrators of gene expression, miRNAs exhibit diverse functions in cellular processes, extending their influence from the nucleus to the cytoplasm. The complex journey of miRNA biogenesis, involving transcription, processing, and integration into the RNA-induced silencing complex, showcases their versatility. In the cytoplasm, mature miRNAs finely tune cellular functions by modulating target mRNA expression, while their reach extends into the nucleus, influencing transcriptional regulation and epigenetic modifications. Dysregulation of miRNAs becomes apparent in various pathologies, such as cancer, autoimmune diseases, and inflammatory conditions. The adaptability of miRNAs to environmental signals, interactions with transcription factors, and involvement in intricate regulatory networks underscore their significance. DNA methylation and histone modifications adds depth to understanding the dynamic regulation of miRNAs. Mechanisms like competition with RNA-binding proteins, sponging, and the control of miRNA levels through degradation and editing contribute to this complex regulation process. In this review, we mainly focus on how dysregulation of miRNA expression can be related with skin-related autoimmune and autoinflammatory diseases, arthritis, cardiovascular diseases, inflammatory bowel disease, autoimmune and autoinflammatory diseases, and neurodegenerative disorders. We also emphasize the multifaceted roles of miRNAs, urging continued research to unravel their complexities. The mechanisms governing miRNA functions promise advancements in therapeutic interventions and enhanced insights into cellular dynamics in health and disease.
Collapse
Affiliation(s)
- Emre Nalbant
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye.
| |
Collapse
|
2
|
Integrated Analysis of Gene Expression and Methylation Data to Identify Potential Biomarkers Related to Atherosclerosis Onset. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5493051. [PMID: 35915606 PMCID: PMC9338736 DOI: 10.1155/2022/5493051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Atherosclerosis is a kind of chronic inflammatory cardiovascular disease. Epigenetic regulation plays a crucial role in atherosclerosis. Our study was aimed at finding potential biomarkers associated with the occurrence of atherosclerosis. Two datasets were downloaded from the Gene Expression Omnibus (GEO) database. The epigenome-wide association study (EWAS) analysis was performed on methylation data using CpGassoc package. The differential expression analysis was conducted on mRNA data using limma package. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment was done in clusterProfiler package. Finally, the logistic regression model was constructed using generalized linear model (glm) function. Between atherosclerotic vs. nonatherosclerotic samples, totally 4980 cytosine-phosphate-guanine (CpG) sites (annotated to 2860 genes) and 132 differentially expressed genes (DEGs) related to atherosclerosis were identified. The annotated 2860 genes and 132 DEGs were significantly enriched in 9 and 4 KEGG pathways and 289 and 132 GO terms, respectively. After cross-analysis, 6 crucial CpG sites were screened to build the model, including cg01187920, cg03422911, cg08018825, cg10967350, cg14473924, and cg25313204. The diagnostic model could reliably separate the atherosclerosis samples from nonatherosclerotic samples. In conclusion, the 6 CpG sites are probably potential diagnostic biomarkers for atherosclerosis, including cg01187920, cg03422911, cg08018825, cg10967350, cg14473924, and cg25313204.
Collapse
|
3
|
MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem 2019; 76:1-12. [PMID: 31808077 DOI: 10.1007/s13105-019-00710-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered as the most common cardiovascular disease and a leading cause of global mortality, which develops through consecutive steps. Various cellular and molecular biomarkers such as microRNAs are identified to be involved in atherosclerosis progression. MicroRNAs are a group of endogenous, short, non-coding RNAs, which are able to bind to specific sequences on target messenger RNAs and thereby modulate gene expression post-transcriptionally. MicroRNAs are key players in wide range of biological processes; thus, their expression level is regulated in pathophysiological conditions. Ample evidences including in vitro and in vivo studies approved a critical role of microRNAs in epigenetic and the sequential processes of atherosclerosis from risk factors to plaque formation, progression, and rupture. Based on these findings, miRNAs seems to be promising candidates for therapeutic approach. This review summarizes the role of miRNAs in atherosclerosis development, epigenetic, and therapy. Moreover, the application of exosomes in miRNA delivery, and/or their prognostic and diagnostic values are also discussed.
Collapse
|
4
|
He XW, Zhao Y, Shi YH, Zhao R, Liu YS, Hu Y, Zhuang MT, Wu YL, Li GF, Yin JW, Cui GH, Liu JR. DNA Methylation Analysis Identifies Differentially Methylated Sites Associated with Early-Onset Intracranial Atherosclerotic Stenosis. J Atheroscler Thromb 2019; 27:71-99. [PMID: 31142690 PMCID: PMC6976716 DOI: 10.5551/jat.47704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Studies have suggested that genetic and environmental factors do not account for all risks and mechanisms of intracranial atherosclerotic stenosis (ICAS). DNA methylation may play a role in the progression of ICAS. Methods: DNA methylation profiles of peripheral blood leucocytes from 7 patients with early-onset ICAS and 7 perfectly matched controls were interrogated for the first time using the Illumina Infinium Human MethylationEPIC BeadChip. Afterward, functional analysis for differentially methylated genes was conducted. In addition, pyrosequencing verification was performed in an independent cohort comprising 21 patients with earlyonset ICAS and 21 age- and gender-matched controls. Results: A total of 318 cytosine-phosphate-guanine sites were found to be differentially methylated based on the established standards. Functional analysis annotated differentially methylated sites to atherosclerosis-related processes and pathways, such as the negative regulation of hydrolase activity (GO 0051346), type II diabetes mellitus (KEGG hsa04930), and the insulin signaling pathway (KEGG hsa04910). In addition, a differentially methylated site was also validated, cg22443212 in gene Rnf213, which showed significant hypermethylation in patients with early-onset ICAS compared with controls 59.56% (49.77%, 88.55%) vs. 44.65% (25.07%, 53.21%), respectively; P = 0.010). Receiver operating characteristic curve analysis showed that the area under the curve value of cg22443212 was 0.744 (95% confidence interval, 0.586–0.866; P = 0.002). Conclusions: We revealed that altered DNA methylation may play a role in the occurrence and development of ICAS. These results provided new epigenetic insights into ICAS.
Collapse
Affiliation(s)
- Xin-Wei He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Ying Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Yan-Hui Shi
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Yi-Sheng Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Yue Hu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Mei-Ting Zhuang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Yi-Lan Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Ge-Fei Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Jia-Wen Yin
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Guo-Hong Cui
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
5
|
Yamada Y, Horibe H, Oguri M, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Sawabe M. Identification of novel hyper- or hypomethylated CpG sites and genes associated with atherosclerotic plaque using an epigenome-wide association study. Int J Mol Med 2018; 41:2724-2732. [PMID: 29436575 PMCID: PMC5846673 DOI: 10.3892/ijmm.2018.3453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic modification that has been implicated in the pathogenesis of atherosclerosis. Although previous studies have identified various CpG sites and genes whose methylation is associated with atherosclerosis in populations with European or Mexican ancestry, the genome‑wide pattern of DNA methylation in the atherosclerotic human aorta is yet to be elucidated in Japanese individuals. In the present study, a genome‑wide analysis of DNA methylation at ~853,000 CpG sites was performed using 128 postmortem aortic intima specimens obtained from 64 Japanese patients. To avoid the effects of interindividual variation, intraindividual paired comparisons were performed between atheromatous plaque lesions and corresponding plaque‑free tissue for each patient. Bisulfite‑modified genomic DNA was analyzed using a specific microarray for DNA methylation. DNA methylation at each CpG site was calculated as the β value, where β = (intensity of the methylated allele)/(intensity of the methylated allele + intensity of the unmethylated allele + 100). Bonferroni's correction for statistical significance of association was applied to compensate for multiple comparisons. The methylation of 2,679 CpG sites differed significantly (P<5.86x10‑8) between atheromatous plaque lesions and the corresponding plaque‑free intima, with 2,272 and 407 CpG sites in atheromatous plaques being hyper‑ or hypomethylated, respectively. A total of 5 hypermethylated CpG sites in atheromatous plaques were demonstrated to have a difference in β value of >0.15 (plaque lesion‑plaque‑free intima) and 11 had a β ratio of >1.50 (plaque/plaque‑free intima). A further 15 and 17 hypomethylated CpG sites in atheromatous plaques were observed to have a difference in β value of <‑0.15 or a β ratio of <0.67, respectively. According to these limits, a total of 16 novel genes that were significantly hyper‑ or hypomethylated in atheromatous plaque lesions compared with the plaque‑free intima were identified in the present study. The results of the present study suggest that the methylation of these genes may contribute to the pathogenesis of atherosclerosis in the Japanese population.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514-8507
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514-8507
- Department of Cardiology, Kasugai Municipal Hospital, Kasugai 486-8510
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012
- Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba 305-8573
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027
- Department of Computer Science, Nagoya Institute of Technology, Nagoya 466-8555
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514-8507
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514-8507
- Department of Internal Medicine, Meitoh Hospital, Nagoya 465-0025
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
6
|
Duan L, Hu J, Xiong X, Liu Y, Wang J. The role of DNA methylation in coronary artery disease. Gene 2018; 646:91-97. [DOI: 10.1016/j.gene.2017.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023]
|
7
|
Koroleva IA, Nazarenko MS, Kucher AN. Role of microRNA in Development of Instability of Atherosclerotic Plaques. BIOCHEMISTRY (MOSCOW) 2018; 82:1380-1390. [PMID: 29223165 DOI: 10.1134/s0006297917110165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs are small noncoding single-stranded RNAs that regulate gene expression. Today, we see an increasing number of studies highlighting the important role of microRNAs in the development and progression of cardiovascular diseases caused by atherosclerotic lesions of arteries. We review the available scientific data on association of the expression of these biomolecules with instability of atherosclerotic plaques in animal models and humans. We made special emphasis on miR-21, -100, -127, -133, -143/145, -221/222, and -494 because they were analyzed in more than one study. We discuss the possibility of microRNAs using in the diagnosis and therapy of atherosclerosis and its complications.
Collapse
Affiliation(s)
- I A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|