1
|
Cai T. Hyperbaric oxygen therapy as an adjunt treatment for glioma and brain metastasis: a literature review. Med Gas Res 2025; 15:420-426. [PMID: 39923138 DOI: 10.4103/mgr.medgasres-d-24-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/06/2024] [Indexed: 02/10/2025] Open
Abstract
The incidence and mortality rates of malignant tumors are increasing annually, with gliomas and brain metastases linked to a poor prognosis. Hyperbaric oxygen therapy is a promising treatment modality for both gliomas and brain metastases. It can alleviate tumor hypoxia and enhance radiosensitivity. When combined with other treatments for gliomas, this therapy has the potential to enhance survival rates. This review addresses the progress in research on the use of hyperbaric oxygen therapy combined with radiotherapy. For brain metastases, the combination of hyperbaric oxygen therapy and stereotactic radiosurgery is both feasible and advantagenous. This combination not only offers protection against radiation-induced brain injury but also supports the recovery of neurological and motor functions. The incidence of adverse reactions to hyperbaric oxygen therapy is relatively low, and it is safe and manageable. Future efforts should be made to investigate the mechanisms by which hyperbaric oxygen therapy combined with radiotherapy treats gliomas and brain metastases, optimize protection of the combined treatment against brain injury, minimizing adverse reactions, conducting multidisciplinary research and clinical trials, and training healthcare providers to facilitate broader clinical application.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhang J, Bai H, Zhao D, Hou F, Lu F, Xia Y, Wang L. Factors affecting prognosis in patients with locally advanced and advanced esophageal cancer receiving definitive radiotherapy in plateau regions. Sci Rep 2025; 15:11017. [PMID: 40164650 PMCID: PMC11958650 DOI: 10.1038/s41598-025-86655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
Esophageal cancer is one of the most prevalent malignancies. This study aimed to examine the impact of factors such as immunotherapy, altitude, radiotherapy target volume, and radiotherapy dose on the prognosis of patients with locally advanced and advanced esophageal cancer who are receiving definitive radiotherapy and living in high-altitude regions. We retrospectively collected data from all patients with locally advanced and advanced esophageal cancer who completed definitive radiotherapy at Yunnan Cancer Hospital between January 2017 and January 2023. A total of 274 patients were included, with a median follow-up time of 24.5 months. The median overall survival (OS) and progression-free survival (PFS) were 15.0 months and 11.0 months, respectively. Adjuvant therapy (including chemotherapy, immunotherapy, and antiangiogenic targeted therapy, P = 0.004) and gross target volume (GTV, P = 0.015) were independent predictors of overall survival, whereas body mass index (BMI, P = 0.037) was an independent predictor of progression-free survival. Patients with a smaller planning target volume (PTV), clinical target volume (CTV), GTV, and gross tumor volume of metastatic regional lymph nodes (GTVnd), as well as those with a smaller New target volume, had a better prognosis. Treatment efficacy affects patient prognosis, with those showing early therapeutic effectiveness having a better prognosis than those for whom the treatment is ineffective. Patients who experienced disease progression within three months after the end of radiotherapy had a poorer prognosis. The altitude and radiotherapy dose had no significant impact on the prognosis of esophageal cancer patients. The location of the lesion, GTV, and simultaneous integrated boost (SIB) radiotherapy were factors influencing the occurrence of esophageal fistulas.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiation Therapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650000, China
| | - Han Bai
- Department of Radiation Therapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650000, China
| | - Dongmei Zhao
- Department of Radiation Oncology, The Third People's Hospital of Honghe Prefecture, Gejiu, 661021, China
| | - Fei Hou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Fei Lu
- Department of Radiation Therapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650000, China
| | - Yaoxiong Xia
- Department of Radiation Therapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650000, China.
| | - Li Wang
- Department of Radiation Therapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650000, China.
| |
Collapse
|
3
|
Wang X, Li L, Wang Y. Mechanisms of Cancer-Induced Bone Pain. J Pain Res 2025; 18:315-326. [PMID: 39867539 PMCID: PMC11760761 DOI: 10.2147/jpr.s498466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies. Despite advancements in medical technology, the treatment outcomes of patients with CIBP remain unsatisfactory, and severe pain can typically only be controlled with opioid medications. However, patients treated with opioid medications often develop tolerance. Therefore, they may require dose increases, which can increase the severity of opioid-induced side effects, in turn influencing quality of life. The peripheral mechanisms of CIBP primarily involve bone tissue damage, tumor microenvironment formation, and changes in the dorsal root ganglion. The central mechanisms usually involve biochemical and electrophysiological changes in the spinal cord and brain. The spinal cord is the main processing center for nociceptive signals. When tumor cells produce inflammatory mediators that acidify the microenvironment or damage nerve endings, the spinal cord becomes excessively stimulated, resulting in increased or prolonged pain signals that propagate to the higher central nervous system through the ascending pathway. There are substantial differences in the pain generation mechanisms between CIBP and common inflammatory and neuropathic pain. Therefore, understanding the mechanisms underpinning CIBP development at the level of the spinal cord is crucial for optimizing pain management. This study explores the pathogenesis of CIBP at the level of the spinal cord and describes recently proposed treatment methods for CIBP.
Collapse
Affiliation(s)
- Xuejuan Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
5
|
Zhang Y, Zhou Y, Li X, Pan X, Bai J, Chen Y, Lai Z, Chen Q, Ma F, Dong Y. Small-molecule α-lipoic acid targets ELK1 to balance human neutrophil and erythrocyte differentiation. Stem Cell Res Ther 2024; 15:100. [PMID: 38589882 PMCID: PMC11003016 DOI: 10.1186/s13287-024-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.
Collapse
Affiliation(s)
- Yimeng Zhang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Xindu Road 783, Chengdu, 610500, China
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ju Bai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | | | - Qiang Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.
| | - Yong Dong
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Xindu Road 783, Chengdu, 610500, China.
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.
| |
Collapse
|
6
|
Meng D, Ren M, Li M, Wang M, Geng W, Shang Q. Molecular mechanism of α-Hederin in tumor progression. Biomed Pharmacother 2024; 170:116097. [PMID: 38160624 DOI: 10.1016/j.biopha.2023.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
α-Hederin is a monosaccharide pentacyclic triterpene saponin compound derived from the Chinese herb, Pulsatilla. It has garnered considerable attention for its anti-tumor, anti-inflammatory, and spasmolytic pharmacological activities. Given the rising incidence of cancer and the pronounced adverse reactions associated with chemotherapy drugs-which profoundly impact the quality of life for cancer patients-there is an immediate need for safe and effective antitumor agents. Traditional drugs and their anticancer effects have become a focal point of research in recent years. Studies indicate that α-Hederin can hinder tumor cell proliferation and impede the advancement of various cancers, including breast, lung, colorectal, and liver cancers. The principal mechanism behind its anti-tumor activity involves inhibiting tumor cell proliferation, facilitating tumor cell apoptosis, and arresting the cell cycle process. Current evidence suggests that α-Hederin can exert its anti-tumor properties through diverse mechanisms, positioning it as a promising agent in anti-tumor therapy. However, a comprehensive literature search revealed a gap in the comprehensive understanding of α-Hederin. This paper aims to review the available literature on the anti-tumor mechanisms of α-Hederin, hoping to provide valuable insights for the clinical treatment of malignant tumors and the innovation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Dandan Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Meng Ren
- Department of Physical Education, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Maofeng Li
- College of Foreign Chinese, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Min Wang
- Experimental Center of Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, No. 238, Jingshi East Road, Lixia District, Jinan 250014, China
| | - Qingxin Shang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China.
| |
Collapse
|
7
|
Ghahremani-Nasab M, Del Bakhshayesh AR, Akbari-Gharalari N, Mehdipour A. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. J Biol Eng 2023; 17:62. [PMID: 37784137 PMCID: PMC10546749 DOI: 10.1186/s13036-023-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
The skin serves as a barrier to protect the body from environmental microorganisms and is the largest tissue of the body and any damage must be quickly and effectively repaired. The fundamental purpose of dermal fibroblasts is to produce and secrete extracellular matrix, which is crucial for healing wounds. The production of collagen by dermal fibroblasts requires the cofactor ascorbic acid, a free radical scavenger. In skin wounds, the presence of Ascorbic acid (AA) decreases the expression of pro-inflammatory factors and increases the expression of wound-healing factors. In addition, AA plays an important role in all three phases of wound healing, including inflammation, proliferation, and regeneration. On the other hand, growing evidence indicates that hypoxia improves the wound healing performance of mesenchymal stem cell-conditioned medium compared to the normoxic-conditioned medium. In a hypoxic-conditioned medium, the proliferation and migration of endothelial cells, fibroblasts, and keratinocytes (important cells in accelerating skin wound healing) increase. In this review, the role of AA, hypoxia, and their interactions on wound healing will be discussed and summarized by the in vitro and in vivo studies conducted to date.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Silina MV, Dzhalilova DS, Makarova OV. Role of MicroRNAs in Regulation of Cellular Response to Hypoxia. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:741-757. [PMID: 37748871 DOI: 10.1134/s0006297923060032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 09/27/2023]
Abstract
Hypoxia causes changes in transcription of the genes that contribute to adaptation of the cells to low levels of oxygen. The main mechanism regulating cellular response to hypoxia is activation of hypoxia-inducible transcription factors (HIF), which include several isoforms and control expression of more than a thousand genes. HIF activity is regulated at various levels, including by small non-coding RNA molecules called microRNAs (miRNAs). miRNAs regulate cellular response to hypoxia by influencing activation of HIF, its degradation, and translation of HIF-dependent proteins. At the same time, HIFs also affect miRNAs biogenesis. Data on the relationship of a particular HIF isoform with miRNAs are contradictory, since studies have been performed using different cell lines, various types of experimental animals and clinical material, as well as at different oxygen concentrations and durations of hypoxic exposure. In addition, HIF expression may be affected by the initial resistance of organisms to lack of oxygen, which has not been taken into account in the studies. This review analyzes the data on the effect of hypoxia on biogenesis and functioning of miRNAs, as well as on the effect of miRNAs on mRNAs of the genes involved in adaptation to oxygen deficiency. Understanding the mechanisms of relationship between HIF, hypoxia, and miRNA is necessary to develop new approaches to personalized therapy for diseases accompanied by oxygen deficiency.
Collapse
Affiliation(s)
- Maria V Silina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
9
|
Kang C, Ju S, Kim J, Jung Y. Chloroquine prevents hypoxic accumulation of HIF-1α by inhibiting ATR kinase: implication in chloroquine-mediated chemosensitization of colon carcinoma cells under hypoxia. Pharmacol Rep 2023; 75:211-221. [PMID: 36508076 DOI: 10.1007/s43440-022-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies. METHODS In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells. RESULTS CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA. CONCLUSIONS Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Chen J, Xu J, Yang J, Zhan Y, Li S, Jia L, Wu W, Si X, Zhang D, Yu K, Yin P, Cao Y, Deng W, Xu K, Li W. α‑hederin overcomes hypoxia‑mediated drug resistance in colorectal cancer by inhibiting the AKT/Bcl2 pathway. Int J Oncol 2023; 62:33. [PMID: 36704835 PMCID: PMC9911077 DOI: 10.3892/ijo.2023.5481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Currently, chemoresistance is a major challenge that directly affects the prognosis of patients with colorectal cancer (CRC). In addition, hypoxia is associated with poor prognosis and therapeutic resistance in patients with cancer. Accumulating evidence has shown that α‑hederin has significant antitumour effects and that α‑hederin can inhibit hypoxia‑mediated drug resistance in CRC; however, the underlying mechanism remains unclear. In the present study, viability and proliferation assays were used to evaluate the effect of α‑hederin on the drug resistance of CRC cells under hypoxia. Sequencing analysis and apoptosis assays were used to determine the effect of α‑hederin on apoptosis under hypoxia. Western blot analysis and reverse transcription‑quantitative PCR were used to measure apoptosis‑related protein and mRNA expression levels. Furthermore, different mouse models were established to study the effect of α‑hederin on hypoxia‑mediated CRC drug resistance in vivo. In the present study, the high expression of Bcl2 in hypoxic CRC cells was revealed to be a key factor in their drug resistance, whereas α‑hederin inhibited the expression of Bcl2 by reducing AKT phosphorylation in vitro and in vivo, and promoted the apoptosis of CRC cells under hypoxia. By contrast, overexpression of AKT reversed the effect of α‑hederin on CRC cell apoptosis under hypoxia. Taken together, these results suggested that α‑hederin may overcome hypoxia‑mediated drug resistance in CRC by inhibiting the AKT/Bcl2 pathway. In the future, α‑hederin may be used as a novel adjuvant for reversing drug resistance in CRC.
Collapse
Affiliation(s)
- Jinbao Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jian Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yueping Zhan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Sen Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Linlin Jia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Wentao Wu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xianke Si
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Die Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Kun Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Hefei, Anhui 230032, P.R. China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Wanli Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China,Professor Ke Xu, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, P.R. China, E-mail:
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Hefei, Anhui 230032, P.R. China,Correspondence to: Professor Wei Li, Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200062, P.R. China, E-mail:
| |
Collapse
|
11
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|
12
|
HIF-α activation by the prolyl hydroxylase inhibitor roxadustat suppresses chemoresistant glioblastoma growth by inducing ferroptosis. Cell Death Dis 2022; 13:861. [PMID: 36209275 PMCID: PMC9547873 DOI: 10.1038/s41419-022-05304-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Patients with glioblastoma (GBM) have poor prognosis and limited treatment options, largely due to therapy resistance upon the induction of apoptosis. Ferroptosis emerges as a potential antineoplastic strategy to bypass apoptosis resistance in traditional therapeutics. Hypoxia is a fundamental hallmark of GBM and hypoxia-inducible factor (HIF) is the main regulator of hypoxia response, however, the role of HIF has not been sufficiently explored in GBM. Herein, we first discovered that amplifying HIF signals by the prolyl hydroxylase (PHD) inhibitor roxadustat significantly suppressed GBM cell growth in vitro and in vivo, especially when the cells were resistant to temozolomide (TMZ). The accumulation of lipid peroxidation and cellular iron in GBM cells following roxadustat treatment indicated that the cells underwent ferroptosis, which was also supported by morphological changes in mitochondrial ultrastructure and immunogenic signals release. Moreover, in vivo studies further confirmed the ferroptosis induction and verified that roxadustat significantly prolonged survival of the mice harboring chemoresistant GBM without visible organ toxicity. Finally, we proved that the ferroptosis induction by roxadustat is HIF-α independent, especially activation of HIF-2α upregulating lipid regulatory genes was revealed to be mainly responsible for the enhanced lipid peroxidation. Altogether, our study provided novel evidence that amplifying HIF signals induced ferroptosis in chemoresistant GBM cells and suppressed the tumor growth in vivo, highlighting that ferroptosis induction by targeting HIF-α might provide new approaches to improve GBM treatment.
Collapse
|
13
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
14
|
Alpuim Costa D, Sampaio-Alves M, Netto E, Fernandez G, Oliveira E, Teixeira A, Daniel PM, Bernardo GS, Amaro C. Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review. Front Neurol 2022; 13:886603. [PMID: 35847231 PMCID: PMC9283648 DOI: 10.3389/fneur.2022.886603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. The mainstay of management for GBM is surgical resection, radiation (RT), and chemotherapy (CT). Even with optimized multimodal treatment, GBM has a high recurrence and poor survival rates ranging from 12 to 24 months in most patients. Recently, relevant advances in understanding GBM pathophysiology have opened new avenues for therapies for recurrent and newly diagnosed diseases. GBM's hypoxic microenvironment has been shown to be highly associated with aggressive biology and resistance to RT and CT. Hyperbaric oxygen therapy (HBOT) may increase anticancer therapy sensitivity by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. Previous data have investigated HBOT in combination with cytostatic compounds, with an improvement of neoplastic tissue oxygenation, inhibition of HIF-1α activity, and a significant reduction in the proliferation of GBM cells. The biological effect of ionizing radiation has been reported to be higher when it is delivered under well-oxygenated rather than anoxic conditions. Several hypoxia-targeting strategies reported that HBOT showed the most significant effect that could potentially improve RT outcomes, with higher response rates and survival and no serious adverse events. However, further prospective and randomized studies are necessary to validate HBOT's effectiveness in the 'real world' GBM clinical practice.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Centro Hiperbárico de Cascais, Cascais, Portugal
| | - Mafalda Sampaio-Alves
- Faculty of Medicine, University of Porto, Oporto, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Eduardo Netto
- Radioncology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), E.P.E., Lisbon, Portugal
| | | | - Edson Oliveira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosurgery Department, Cluster CUF Descobertas, Lisbon, Portugal
| | - Andreia Teixeira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Pedro Modas Daniel
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Guilherme Silva Bernardo
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Urology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Carla Amaro
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Otorhinolaryngology Department, CUF Descobertas, Lisbon, Portugal
| |
Collapse
|
15
|
Mao CL, Seow KM, Chen KH. The Utilization of Bevacizumab in Patients with Advanced Ovarian Cancer: A Systematic Review of the Mechanisms and Effects. Int J Mol Sci 2022; 23:6911. [PMID: 35805914 PMCID: PMC9266930 DOI: 10.3390/ijms23136911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Most ovarian cancer cases are diagnosed at an advanced stage (III or IV), in which a primary debulking surgery combined with adjuvant systemic chemotherapy is the standard management. Since targeted therapy is less toxic to human cells than systemic chemotherapy, it has drawn much attention and become more popular. Angiogenesis is a critical process during the proliferation of ovarian cancer cells. Currently, many studies have put emphases on anti-angiogenetic medication, such as bevacizumab, the first and most investigated angiogenesis inhibitor that can exert anti-neoplastic effects. Bevacizumab is a recombinant humanized monoclonal antibody that has been approved for first-line maintenance treatment of advanced ovarian cancer. This review is a summary of current literature about the molecular mechanisms of actions, safety, and effects of bevacizumab for use in advanced epithelial ovarian cancer. Some common side effects of bevacizumab will be also discussed. As an inhibitor of angiogenesis, bevacizumab binds to circulating vascular endothelial growth factor (VEGF) and thereby inhibits the binding of VEGF to its receptors on the surface of endothelial cells. Neutralization of VEGF prevents neovascularization and leads to apoptosis of tumor endothelial cells and a decrease in interstitial fluid pressure within the tumors, which allows greater capacity for chemotherapeutic drugs to reach specific targeted sites. Grossly, bevacizumab has demonstrated some significant therapeutic benefits in many randomized trials in combination with the standard chemotherapy for advanced epithelial ovarian cancer. Based on the available evidence, a higher dosage and a longer duration of bevacizumab appear to achieve better therapeutic effects and progression-free survival. On the other hand, patients with more severe diseases or at a higher risk of progression seem to benefit more from bevacizumab use. However, many unknown aspects of bevacizumab, including detailed mechanisms of actions, effectiveness, and safety for the treatment of ovarian cancer, warrant further investigation.
Collapse
Affiliation(s)
- Chih-Lin Mao
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
| | - Kok-Min Seow
- Department of Obstetrics and Gynecology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- Department of Obstetrics and Gynecology, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|