1
|
Zaitseva NV, Zemlyanova МА, Gekht AB, Dedaev SI, Kol'dibekova YV, Peskova ЕV, Stepankov МS, Tinkov AA, Martins AC, Skalny AV, Aschner M. Neurotoxic effects of aluminum and manganese: From molecular to clinical effects. J Neurol Sci 2025; 473:123480. [PMID: 40233648 DOI: 10.1016/j.jns.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
The existing data demonstrate that aluminum (Al) and manganese (Mn) possess neurotoxic effects upon overexposure due to induction of neuronal oxidative stress and apoptosis, synaptic dysfunction and neurotransmitter metabolism, neuroinflammation, and cytoskeletal pathology. However, systematic evidence regarding contribution of these metals to development of neurological diseases are lacking. Therefore, in this review we provide a summary of the existing data on contribution of Al and Mn exposure to brain diseases and its symptoms. Causal relations were demonstrated for development of parkinsonism upon exposure to high doses of Mn, whereas Al overload is considered the key contributor to dialysis encephalopathy. Certain studies demonstrate that Al and Mn overexposure is associated with neurodegenerative diseases including Alzheimer's and Parkinson's diseases, as well as neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Although laboratory studies demonstrate the potential contribution of Al and Mn to molecular pathogenesis of these diseases, clinical findings supporting the causal role of metals is these pathologies are yet insufficient. Therefore, estimation of the contribution of these metals to neurological disorders is essential for development of more effective early diagnostics and prevention of diseases under exposure to adverse neurological effects of Al and Mn compounds.
Collapse
Affiliation(s)
- N V Zaitseva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation.
| | - М А Zemlyanova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - A B Gekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation; Pirogov Russian Medical Research University, Moscow, Russian Federation
| | - S I Dedaev
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Yu V Kol'dibekova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Е V Peskova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - М S Stepankov
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russian Federation; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Ren J, Wu C, Zeng M, Qu M, Gao G, Chen N, Yue J, Jiang Y, Zhao T, Xiang N, Meng F, Lu LL. A novel function for α-synuclein as a regulator of NCK2 in olfactory bulb: implications for its role in olfaction. Cell Biosci 2024; 14:139. [PMID: 39543759 PMCID: PMC11566155 DOI: 10.1186/s13578-024-01313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
To investigate physiological function of α-synuclein is important for understanding its pathophysiological mechanism in synucleinopathies including Parkinson's disease. Employing knockout mice, we found that Snac/α-synuclein deletion induced aberrant projection of olfactory sensory neurons and hyposmia. We identified 9 axon guidance associated differentially expressed proteins using iTRAQ based Liquid Chromatograph Mass Spectrometer. NCK2 is most significantly down-regulated protein among them. We further found that either α-synuclein deletion or NCK2 deficiency induced Eph A4 inactivation. Re-expressing Snac/α-synuclein in its knockout neurons reversed the down-regulation of NCK2, as well as the inactivation of EphA4. Overexpression of Snac/α-synuclein in α-synuclein deleted mice reversed the down-regulation of NCK2 and pEphA4, and improved the olfactory impairment of mice. Correlation analysis showed that there is a significant correlation between the protein level of α-synuclein, NCK2, and pEphA4, respectively. Nonetheless, immunoprecipitation analysis showed that NCK2 was associated with both EphA4 and Rho A, suggesting that NCK2 as a scaffolding protein to modulate Eph A4/Rho A pathway. Moreover, Rho A activity was significantly lower in α-synuclein deficient mice. Thus, α-synuclein regulates olfactory neurons projection through NCK2 dependent EphA4/Rho A pathway. Malfunction of α-synuclein because of deletion may cause aberrant olfactory neurons projection. This extended our knowledge of α-synuclein functions, which may explain why olfaction is usually impaired in some synucleinopathies.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Chao Wu
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Mengxia Zeng
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Mingqin Qu
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Ning Chen
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jingjing Yue
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Yuwen Jiang
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Tongfei Zhao
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Na Xiang
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ling-Ling Lu
- Department of Neurobiology, Capital Medical University, 10 You'an Men Wai, Xitoutiao, Beijing, 100069, China.
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
3
|
Rao AS, Nair A, Nivetha K, Ayesha B, Hardi K, Divya V, Veena SM, Anantharaju KS, More SS. Impacts of Omega-3 Fatty Acids, Natural Elixirs for Neuronal Health, on Brain Development and Functions. Methods Mol Biol 2024; 2761:209-229. [PMID: 38427239 DOI: 10.1007/978-1-0716-3662-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.
Collapse
Affiliation(s)
- Archana S Rao
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Ajay Nair
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - K Nivetha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Bibi Ayesha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Kapadia Hardi
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Vora Divya
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - S M Veena
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India
| | - K S Anantharaju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
4
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|