1
|
Mikheeva I, Zhujkova N, Mikhailova G, Shtanchaev R, Pavlik L, Arkhipov V. Morphological changes in motoneurons of the oculomotor nucleus of mice after a 30-day space flight and through a 7-day period of readaptation to earth gravity. Brain Struct Funct 2023; 228:2041-2049. [PMID: 37688593 DOI: 10.1007/s00429-023-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The cellular mechanisms of neuroplastic changes in the structure of motoneurons and neuropils of the oculomotor (III) nuclei in mice after a 30-day space flight and 7 days after landing were studied. The results showed that microgravity caused degenerative phenomena in neurons: a decrease in the number of terminal dendritic branches was found both after flight and after readaptation to Earth's gravity. In mice after the flight, the number of axodendritic synapses was less than in the control, and their number was not restored after the readaptation. The number of mitochondria in the motoneurons of animals after the flight also decreased and after the readaptation reached only the control value. In addition, a significant number of dark motorneurons were found in mice after readaptation, which indicates that degeneration was caused not only by microgravity, but also by a reaction to the landing of the biosatellite. On the contrary, in the trochlear nucleus, as we showed earlier (Mikheeva et al. in Brain Res 15(1795):148077. https://doi.org/10.1016/j.brainres.2022.148077 , 2022), after readaptation, the dendrites and synaptic contacts were restored, and mitogenesis is significantly enhanced. It has been suggested that morphological changes in the oculomotor nucleus may be the main cause of microgravity-induced nystagmus.
Collapse
Affiliation(s)
- Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Natalya Zhujkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Gulnara Mikhailova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Rashid Shtanchaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
3
|
Koppelmans V, Mulavara AP, Seidler RD, De Dios YE, Bloomberg JJ, Wood SJ. Cortical thickness of primary motor and vestibular brain regions predicts recovery from fall and balance directly after spaceflight. Brain Struct Funct 2022; 227:2073-2086. [PMID: 35469104 DOI: 10.1007/s00429-022-02492-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 01/02/2023]
Abstract
Motor adaptations to the microgravity environment during spaceflight allow astronauts to perform adequately in this unique environment. Upon return to Earth, this adaptation is no longer appropriate and can be disruptive for mission critical tasks. Here, we measured if metrics derived from MRI scans collected from astronauts can predict motor performance post-flight. Structural and diffusion MRI scans from 14 astronauts collected before launch, and motor measures (balance performance, speed of recovery from fall, and tandem walk step accuracy) collected pre-flight and post-flight were analyzed. Regional measures of gray matter volume (motor cortex, paracentral lobule, cerebellum), myelin density (motor cortex, paracentral lobule, corticospinal tract), and white matter microstructure (corticospinal tract) were derived as a-priori predictors. Additional whole-brain analyses of cortical thickness, cerebellar gray matter, and cortical myelin were also tested for associations with post-flight and pre-to-post-flight motor performance. The pre-selected regional measures were not significantly associated with motor behavior. However, whole-brain analyses showed that paracentral and precentral gyri thickness significantly predicted recovery from fall post-spaceflight. Thickness of vestibular and sensorimotor regions, including the posterior insula and the superior temporal gyrus, predicted balance performance post-flight and pre-to-post-flight decrements. Greater cortical thickness pre-flight predicted better performance post-flight. Regional thickness of somatosensory, motor, and vestibular brain regions has some predictive value for post-flight motor performance in astronauts, which may be used for the identification of training and countermeasure strategies targeted for maintaining operational task performance.
Collapse
Affiliation(s)
| | | | - Rachael D Seidler
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | | | - Jacob J Bloomberg
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
| | - Scott J Wood
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
| |
Collapse
|
4
|
Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021; 11:11452. [PMID: 34075076 PMCID: PMC8169688 DOI: 10.1038/s41598-021-90439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Columbia, MD, 21046, USA. .,Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
| | - Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Willian A da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nathaniel Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Nina C Nishiyama
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Michael J Pecaut
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose University, San Jose, CA, 95192, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|