1
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
2
|
Wang W, Ren Y, Xu F, Zhang X, Wang F, Wang T, Zhong H, Wang X, Yao Y. Identification of hub genes significantly linked to temporal lobe epilepsy and apoptosis via bioinformatics analysis. Front Mol Neurosci 2024; 17:1300348. [PMID: 38384278 PMCID: PMC10879302 DOI: 10.3389/fnmol.2024.1300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Background Epilepsy stands as an intricate disorder of the central nervous system, subject to the influence of diverse risk factors and a significant genetic predisposition. Within the pathogenesis of temporal lobe epilepsy (TLE), the apoptosis of neurons and glial cells in the brain assumes pivotal importance. The identification of differentially expressed apoptosis-related genes (DEARGs) emerges as a critical imperative, providing essential guidance for informed treatment decisions. Methods We obtained datasets related to epilepsy, specifically GSE168375 and GSE186334. Utilizing differential expression analysis, we identified a set of 249 genes exhibiting significant variations. Subsequently, through an intersection with apoptosis-related genes, we pinpointed 16 genes designated as differentially expressed apoptosis-related genes (DEARGs). These DEARGs underwent a comprehensive array of analyses, including enrichment analyses, biomarker selection, disease classification modeling, immune infiltration analysis, prediction of miRNA and transcription factors, and molecular docking analysis. Results In the epilepsy datasets examined, we successfully identified 16 differentially expressed apoptosis-related genes (DEARGs). Subsequent validation in the external dataset GSE140393 revealed the diagnostic potential of five biomarkers (CD38, FAIM2, IL1B, PAWR, S100A8) with remarkable accuracy, exhibiting an impressive area under curve (AUC) (The overall AUC of the model constructed by the five key genes was 0.916, and the validation set was 0.722). Furthermore, a statistically significant variance (p < 0.05) was observed in T cell CD4 naive and eosinophil cells across different diagnostic groups. Exploring interaction networks uncovered intricate connections, including gene-miRNA interactions (164 interactions involving 148 miRNAs), gene-transcription factor (TF) interactions (22 interactions with 20 TFs), and gene-drug small molecule interactions (15 interactions involving 15 drugs). Notably, IL1B and S100A8 demonstrated interactions with specific drugs. Conclusion In the realm of TLE, we have successfully pinpointed noteworthy differentially expressed apoptosis-related genes (DEARGs), including CD38, FAIM2, IL1B, PAWR, and S100A8. A comprehensive understanding of the implications associated with these identified genes not only opens avenues for advancing our comprehension of the underlying pathophysiology but also bears considerable potential in guiding the development of innovative diagnostic methodologies and therapeutic interventions for the effective management of epilepsy in the future.
Collapse
Affiliation(s)
- Weiliang Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Yinghao Ren
- Department of Dermatology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobin Zhang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fengpeng Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhong
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yao
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Zubareva OE, Sinyak DS, Kalita AD, Griflyuk AV, Diespirov GP, Postnikova TY, Zaitsev AV. Antiepileptogenic Effects of Anakinra, Lamotrigine and Their Combination in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2023; 24:15400. [PMID: 37895080 PMCID: PMC10607594 DOI: 10.3390/ijms242015400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia; (O.E.Z.); (D.S.S.); (A.D.K.); (A.V.G.); (G.P.D.); (T.Y.P.)
| |
Collapse
|
4
|
Zabrodskaya Y, Paramonova N, Litovchenko A, Bazhanova E, Gerasimov A, Sitovskaya D, Nezdorovina V, Kravtsova S, Malyshev S, Skiteva E, Samochernykh K. Neuroinflammatory Dysfunction of the Blood-Brain Barrier and Basement Membrane Dysplasia Play a Role in the Development of Drug-Resistant Epilepsy. Int J Mol Sci 2023; 24:12689. [PMID: 37628870 PMCID: PMC10454729 DOI: 10.3390/ijms241612689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistance epilepsy (DRE) is a key problem in neurology. It is possible that damage to the blood-brain barrier (BBB) may affect resistance in DRE. The aim of this work was to assess the damage and dysfunction in the BBB in the area of epileptic foci in patients with DRE under conditions of neuroinflammation. The changes to the BBB in temporal lobe epilepsy (by immunohistochemistry and transmission electron microscopy), levels of neuroinflammatory proteins, and cytokine levels in the blood (by multiplex analysis) were studied. Increased levels of vascular endothelial growth factor (VEGF) and growth-regulated protein (GRO), and decreased levels of epidermal growth factor (EGF) in plasma, combined with overexpression of the VEGF-A receptor by endotheliocytes were detected. Malformation-like growths of the basement membrane of the capillaries of the brain complicate the delivery of antiepileptic drugs (AEDs). Dysplasia of the basement membrane is the result of inadequate reparative processes in chronic inflammation. In conclusion, it should be noted that damage to the microcirculatory network of the brain should be considered one of the leading factors contributing to DRE.
Collapse
Affiliation(s)
- Yulia Zabrodskaya
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Natalia Paramonova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; (N.P.); (A.L.); (E.B.)
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - Anastasia Litovchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; (N.P.); (A.L.); (E.B.)
| | - Elena Bazhanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; (N.P.); (A.L.); (E.B.)
- Golikov Research Center of Toxicology, 192019 St. Petersburg, Russia
| | - Aleksandr Gerasimov
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Darya Sitovskaya
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Victoria Nezdorovina
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Svetlana Kravtsova
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Stanislav Malyshev
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| | - Ekaterina Skiteva
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
- State Scientific Center of the Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia
| | - Konstantin Samochernykh
- Polenov Neurosurgical Institute—Branch of the Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.G.); (D.S.); (V.N.); (S.K.); (S.M.); (E.S.); (K.S.)
| |
Collapse
|
5
|
Mohamed EK, Hafez DM. Gallic acid and metformin co-administration reduce oxidative stress, apoptosis and inflammation via Fas/caspase-3 and NF-κB signaling pathways in thioacetamide-induced acute hepatic encephalopathy in rats. BMC Complement Med Ther 2023; 23:265. [PMID: 37491245 PMCID: PMC10367384 DOI: 10.1186/s12906-023-04067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a consequence of chronic or acute liver diseases. This study evaluates the combined effect of gallic acid (GA), and metformin (Met) on the liver and brain damage associated with HE. METHODS Acute HE was induced by a single dose of thioacetamide (TAA) (300 mg/kg) as an I.P. injection. Treated groups received GA group (100 mg/kg/day, p.o), Met (200 mg/kg/day, p.o), or their combination for 25 consecutive days before TAA injection. RESULTS The administration of TAA induced various biochemical and histopathological alterations. In contrast, treatment with GA either alone or combined with Met resulted in improved liver functions by the significant reduction in serum ALT, AST, and ALP activities, and ammonia levels. Inflammatory mediators; TNF-α, IL-6, and NFkβ levels were decreased by these treatments as well as apoptotic cascade via down-regulation of FAS and caspase-3 (CASP-3) expression in hepatic tissues. Furthermore, GA and Met either alone or combined protected the liver and brain tissues from damage by increased glutathione concentration while decreasing malondialdehyde. In addition, it was accompanied by the improvement of the brain neurotransmitter profile via the restoration of norepinephrine, dopamine, and serotonin levels. Based on our data, this is the first study to report a novel combined hepatoprotective and cognitive enhancing effect of GA and Met against TAA-induced acute liver and brain injury. CONCLUSION GA and Met combination resulted in a prominent improvement in HE complications, relative to monotherapy. Both agents potentiated the antioxidant, anti-inflammatory, and anti-apoptotic effects of each other.
Collapse
Affiliation(s)
- Ehsan Khedre Mohamed
- Biochemistry department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Dawlat Mohamed Hafez
- Histology department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
6
|
Sokolova TV, Litovchenko AV, Paramonova NM, Kasumov VR, Kravtsova SV, Nezdorovina VG, Sitovskaya DA, Skiteva EN, Bazhanova ED, Zabrodskaya YM. Glioneuronal apoptosis and neuroinflammation in drug resistant temporal lobe epilepsy. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2023. [DOI: 10.14412/2074-2711-2023-1-36-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- T. V. Sokolova
- Polenov Neurosurgical Institute, Almazov National Medical Centre
| | - A. V. Litovchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science
| | - N. M. Paramonova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science
| | - V. R. Kasumov
- Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
| | - S. V. Kravtsova
- Polenov Neurosurgical Institute, Almazov National Medical Centre
| | | | - D. A. Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Centre
| | - E. N. Skiteva
- Polenov Neurosurgical Institute, Almazov National Medical Centre
| | - E. D. Bazhanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science; Golikov Research Center of Toxicology, Federal Medical and Biological Agency
| | - Y. M. Zabrodskaya
- Polenov Neurosurgical Institute, Almazov National Medical Centre; Golikov Research Center of Toxicology, Federal Medical and Biological Agency
| |
Collapse
|