1
|
Kubiak M, Białas W, Celińska E. Thermal treatment improves a process of crude glycerol valorization for the production of a heterologous enzyme by Yarrowia lipolytica. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00648. [PMID: 34221911 PMCID: PMC8243353 DOI: 10.1016/j.btre.2021.e00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
A crude glycerol valorization process to enzymatic preparation was developed. Impact of thermal treatment on the protein production by Y. lipolytica is studied. Pilot-scale processes with laboratory and technical substrates were simulated. Techno-economic analysis of a pilot-scale waste-free process was conducted. Comprehensive stream analysis and identification of bottlenecks is provided.
Valorization of crude glycerol requires a potent bifunctional biocatalyst, such as Yarrowia lipolytica, capable of high-density growth on this substrate, and having i.a. high propensity for heterologous protein synthesis. Increasing evidence suggests that controlled administration of stress, i.a. thermal treatment, has a positive impact on bioprocess performance. In this study, we systematically adjusted thermal treatment conditions (20 to 42 °C) in order to maximize heterologous protein production by Y. lipolytica growing in crude glycerol-based medium. Our results showed nearly 30% enhancement in the enzyme production triggered by temporary exposure to decreased temperature. Here developed mathematical model indicated optimal treatment conditions (20 °C, 153′) that were later applied to a process with biodiesel-derived glycerol and technical substrates. Techno-economic analysis of a pilot-scale-waste-free process was conducted. Quantitative description of the associated costs and economic gain due to exploitation of industrial substrates, as well as indication of current bottlenecks of the process, are also provided.
Collapse
Affiliation(s)
- Monika Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| |
Collapse
|
2
|
Kubiak-Szymendera M, Pryszcz LP, Białas W, Celińska E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms 2021; 9:microorganisms9091798. [PMID: 34576693 PMCID: PMC8471669 DOI: 10.3390/microorganisms9091798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica’s genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica’s genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay.
Collapse
Affiliation(s)
- Monika Kubiak-Szymendera
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Leszek P. Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
- Correspondence:
| |
Collapse
|
3
|
Qiu X, Gu Y, Du G, Zhang J, Xu P, Li J. Conferring thermotolerant phenotype to wild-type Yarrowia lipolytica improves cell growth and erythritol production. Biotechnol Bioeng 2021; 118:3117-3127. [PMID: 34009652 DOI: 10.1002/bit.27835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
In microbial engineering, heat stress is an important environmental factor modulating cell growth, metabolic flux distribution and the synthesis of target products. Yarrowia lipolytica, as a GARS (generally recognized as safe) nonconventional yeast, has been widely used in the food industry, especially as the host of erythritol production. Biomanufacturing economics is limited by the high operational cost of cooling energy in large-scale fermentation. It is of great significance to select thermotolerant Y. lipolytica to reduce the cooling cost and elucidate the heat-resistant mechanism at molecular level. For this purpose, we performed adaptive evolution and obtained a thermotolerant strain named Y. lipolytica BBE-18. Transcriptome analysis allows us to identify four genes in thiamine metabolism pathway that are responsible for the complicated thermotolerant phenotype. The heat-resistant phenotype was validated with the model strain Y. lipolytica Po1f by overexpression of single and combined genes. Then, conferring the thermotolerant phenotype to the wild-type Y. lipolytica BBE-17 enable the strain to produce three-times more erythritol of the control strain with 3°C higher than optimal cultivation temperature. To our knowledge, this is the first report on engineering heat-resistant phenotype to improve the erythritol production in Y. lipolytica. However, due to the increase of culture temperature, a large amount of adenosine triphosphate is consumed to ensure the life activities of Y. lipolytica which limits the potential of cell synthetic products to a certain extent. Even so, this study provides a reference for Y. lipolytica to produce other products under high temperature.
Collapse
Affiliation(s)
- Xueliang Qiu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Gu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Xu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Choline–betaine pathway contributes to hyperosmotic stress and subsequent lethal stress resistance in Pseudomonas protegens SN15-2. J Biosci 2020. [DOI: 10.1007/s12038-020-00060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Hackenschmidt S, Bracharz F, Daniel R, Thürmer A, Bruder S, Kabisch J. Effects of a high-cultivation temperature on the physiology of three different Yarrowia lipolytica strains. FEMS Yeast Res 2020; 19:5586564. [PMID: 31605534 DOI: 10.1093/femsyr/foz068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of non-conventional, oleaginous Yarrowia lipolytica strains are characterized in detail. Therefore, we analyzed three strains in regard to their metabolic and physiological properties, especially with respect to important characteristics of a production strain. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived. Especially sugar alcohol production, as well as an agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate the genotypic basis of particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.
Collapse
Affiliation(s)
- S Hackenschmidt
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - F Bracharz
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - R Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - A Thürmer
- MF 2: Genomsequenzierung, Robert Koch Institute Berlin, Seestrasse 10, 13353 Berlin, Germany
| | - S Bruder
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - J Kabisch
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| |
Collapse
|
6
|
Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Appl Microbiol Biotechnol 2019; 103:6449-6462. [DOI: 10.1007/s00253-019-09993-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
7
|
Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Gorret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8870-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Arinbasarova AY, Biryukova EN, Medentsev AG. Antistress systems of the yeast Yarrowia lipolitica (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Arinbasarova AY, Biryukova EN, Suzina NE, Medentsev AG. Synthesis and localization of L-lactate oxidase in yeasts Yarrowia lipolytica. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171405004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Biryukova EN, Stupar YO, Arinbasarova AY, Medentsev AG. Yarrowia lipolytica, a producer of L-lactate oxidase. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709050191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|