1
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
2
|
Xue W, Zhang C, Zhou D. Positive and negative effects of recirculating aquaculture water advanced oxidation: O 3 and O 3/UV treatments improved water quality but increased antibiotic resistance genes. WATER RESEARCH 2023; 235:119835. [PMID: 36905731 DOI: 10.1016/j.watres.2023.119835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Recirculating aquaculture systems (RASs) can be efficiently used for aquaculture, and oxidation treatment is commonly used to improve water quality. However, the effects of oxidation treatments on aquaculture water safety and fish yield in RASs are poorly understood. In this study, we tested the effects of O3 and O3/UV treatments on aquaculture water quality and safety during culture of crucian carp. O3 and O3/UV treatments reduced the dissolved organic carbon (DOC) concentration by ∼40% and destroyed the refractory organic lignin-like features. There was enrichment of ammonia oxidizing (Nitrospira, Nitrosomonas, and Nitrosospira) and denitrifying (Pelomonas, Methyloversatilis, and Sphingomonas) bacteria, and N-cycling functional genes were enriched by 23% and 48%, respectively, after O3 and O3/UV treatments. Treatment with O3 and O3/UV reduced NH4+-N and NO2--N in RASs. O3/UV treatment increased fish length and weight as well as probiotics in fish intestine. However, high saturated intermediates and tannin-like features induced antibiotic resistance genes (ARGs) in O3 and O3/UV treatments, by 52% and ∼28%, respectively, and also enhanced horizontal transfer of ARGs. Overall, the application of O3/UV achieved better effects. However, understanding the potential biological risks posed by ARGs in RASs and determining the most efficient water treatment strategies to mitigate these risks should be goals of future work.
Collapse
Affiliation(s)
- Wenqi Xue
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
3
|
Transformation of HBCDs by Rhodococcus sp. stu-38. Curr Microbiol 2022; 79:200. [PMID: 35596087 DOI: 10.1007/s00284-022-02872-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are brominated flame retardants causing serious environmental pollution. HBCDs in the environment could be transformed to various products. Identification of transformation products has been performed using various mass-spectrometric techniques. However, bacterial transformation of HBCDs yielding low-level products was not well studied. In this paper, a Rhodococcus strain stu-38 which could stereoselectively transform HBCDs in mineral salt medium, seawater, and growth medium was isolated. Seven potential biotransformation products of HBCDs were identified by using GC-MS. These products, including brominated alkenes, dibromocyclododecadiene and bromocyclododecatriene; brominated alkenols, bromocyclododecadienol and bromocyclododecatrienol; fully debrominated compounds, cyclododecadiendiol, 1,2-epoxy-5,9-cyclododecadiene, and cyclododecadienol, were presented in rather low level which could lead to false negative results. The low-level transformation products should not be ignored because their toxicity was less assessment. This research highlighted identification of the low-level transformation products to reveal the complicated stereoselective biotransformation of HBCDs.
Collapse
|
4
|
Kato H, Sakai K, Itoh S, Iwata N, Ito M, Hori M, Kato M, Shimizu M. Enhanced Bioremediation of 4-Chlorophenol by Electrically Neutral Reactive Species Generated from Nonthermal Atmospheric-Pressure Plasma. ACS OMEGA 2022; 7:16197-16203. [PMID: 35571825 PMCID: PMC9097213 DOI: 10.1021/acsomega.2c01615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
4-Chlorophenol (4-CP) is a chlorinated aromatic compound with broad industrial applications. It is released into the environment as an industrial byproduct and is highly resistant to biodegradation. Pseudomonas sp. in the environment and activated sludge are used for 4-CP bioremediation; however, the degradation of 4-CP takes a long time. Consequently, the toxicity of 4-CP is a major barrier to its bioremediation. In this study, we investigated the synergistic effect of electrically neutral reactive species on the bacterial bioremediation of 4-CP. Our results showed that the concentration of 4-CP decreased from 2.0 to 0.137 mM and that it was converted to 4-chlorocatechol (4-CC; 0.257 mM), 4-chlororesorcinol (0.157 mM), hydroquinone (0.155 mM), and trihydroxy chlorobenzene and their respective ring-cleaved products following irradiation of neutral reactive species. These compounds were less toxic than 4-CP, except for 4-CC, which reduced the toxicity of 4-CP to Pseudomonas putida. When the neutral reactive species-treated 4-CP fraction was added to P. putida cultured in a synthetic sewage medium for 48 h, the 4-CP concentration was reduced to 0.017 mM, whereas nontreated 4-CP (2.0 mM) was hardly degraded by P. putida. These results suggest that the biodegradation of 4-CP can be efficiently improved by combining irradiation of neutral reactive species with microbial treatment. The irradiation of neutral reactive species of environmental pollutants may additionally lead to further improvements in bioremediation processes.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Faculty
of Agriculture, Meijo University, Nagoya 468-8502, Aichi, Japan
| | - Kiyota Sakai
- Faculty
of Agriculture, Meijo University, Nagoya 468-8502, Aichi, Japan
| | - Shou Itoh
- Faculty
of Agriculture, Meijo University, Nagoya 468-8502, Aichi, Japan
| | - Naoyuki Iwata
- Department
of Electronics Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan
| | - Masafumi Ito
- Faculty
of Science and Technology, Meijo University, Nagoya 468-8502, Aichi, Japan
| | - Masaru Hori
- Center
for Low-temperature Plasma Sciences, Nagoya
University, Nagoya 464-8603, Aichi, Japan
| | - Masashi Kato
- Faculty
of Agriculture, Meijo University, Nagoya 468-8502, Aichi, Japan
| | - Motoyuki Shimizu
- Faculty
of Agriculture, Meijo University, Nagoya 468-8502, Aichi, Japan
| |
Collapse
|
5
|
Frankfater C, Henson WR, Juenger-Leif A, Foston M, Moon TS, Turk J, Kao JLF, Haas A, Hsu FF. Structural Determination of a New Peptidolipid Family from Rhodococcus opacus and the Pathogen Rhodococcus equi by Multiple Stage Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:611-623. [PMID: 31967470 DOI: 10.1021/jasms.9b00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell walls of the genus Rhodococcus including the pathogenic bacterium Rhodococcus equi (R. equi) and biotechnologically important bacterium Rhodococcus opacus (R. opacus) contain an abundant peptidolipid (or termed lipopeptide) family whose structures have not been reported previously. Here, we describe a linear ion-trap multiple-stage mass spectrometric (LIT MSn) approach with high resolution mass spectrometry (HRMS), in conjunction with NMR spectroscopy, chemical reactions, and GC/MS analysis to define the structures of these compounds. We employed LIT MSn (n = 2-8) on the [M + Na]+ ion species to establish the peptide sequence, the identity of the fatty acyl substituent, and its location within the molecule, while NMR spectroscopy and GC/MS were used to recognize the Leu and Ile moieties. The major new lipopeptide found in R. opacus is defined as C17H35CH(OH)CH2CO-NHLeu-Ser-Leu-Ile-Thr-Ile-PheCOOH, where a β-OH fatty acyl (C18-C22) substituent is attached to the N-terminal of the LSLITIF peptide chain via a NH-CO bond. By contrast, the main peptidolipids found in R. equi belong to the cyclopeptidolipid family, which possesses the same peptide sequence and lipid chain, but the β-OH group of the fatty acyl moiety and the C-terminus of the peptide (i.e., the -COOH) are cyclized by an ester bond formation to a lactone, with a structure similar to iturin-A (Peypoux, F. et al. Biochemistry 1978, 17, 3992-3996). The antibiotic activity test of these new lipids did not reveal an activity against any of seven microorganisms tested.
Collapse
Affiliation(s)
| | | | - Alexandra Juenger-Leif
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | | | | | | | | | - Albert Haas
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | | |
Collapse
|
6
|
Anteneh YS, Franco CMM. Whole Cell Actinobacteria as Biocatalysts. Front Microbiol 2019; 10:77. [PMID: 30833932 PMCID: PMC6387938 DOI: 10.3389/fmicb.2019.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable biological processes have received renewed attention due to increasing environmental concerns. Despite having high industrial output, most of the current chemical processes are associated with environmentally undesirable by-products which escalate the cost of downstream processing. Compared to chemical processes, whole cell biocatalysts offer several advantages including high selectivity, catalytic efficiency, milder operational conditions and low impact on the environment, making this approach the current choice for synthesis and manufacturing of different industrial products. In this review, we present the application of whole cell actinobacteria for the synthesis of biologically active compounds, biofuel production and conversion of harmful compounds to less toxic by-products. Actinobacteria alone are responsible for the production of nearly half of the documented biologically active metabolites and many enzymes; with the involvement of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces, Nocardia and Corynebacterium for the production of useful industrial commodities.
Collapse
Affiliation(s)
- Yitayal Shiferaw Anteneh
- College of Medicine and Public Health, Medical Biotechnology, Flinders University, Bedford Park, SA, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
7
|
de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 2014; 98:5599-606. [DOI: 10.1007/s00253-014-5549-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
|