1
|
Daumann LJ, Pol A, Op den Camp HJM, Martinez-Gomez NC. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Adv Microb Physiol 2022; 81:1-24. [PMID: 36167440 DOI: 10.1016/bs.ampbs.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.
Collapse
Affiliation(s)
- Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States
| |
Collapse
|
2
|
Salem R, ElDyasti A, Audette GF. Biomedical Applications of Biomolecules Isolated from Methanotrophic Bacteria in Wastewater Treatment Systems. Biomolecules 2021; 11:1217. [PMID: 34439884 PMCID: PMC8392503 DOI: 10.3390/biom11081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Wastewater treatment plants and other remediation facilities serve important roles, both in public health, but also as dynamic research platforms for acquiring useful resources and biomolecules for various applications. An example of this is methanotrophic bacteria within anaerobic digestion processes in wastewater treatment plants. These bacteria are an important microbial source of many products including ectoine, polyhydroxyalkanoates, and methanobactins, which are invaluable to the fields of biotechnology and biomedicine. Here we provide an overview of the methanotrophs' unique metabolism and the biochemical pathways involved in biomolecule formation. We also discuss the potential biomedical applications of these biomolecules through creation of beneficial biocompatible products including vaccines, prosthetics, electronic devices, drug carriers, and heart stents. We highlight the links between molecular biology, public health, and environmental science in the advancement of biomedical research and industrial applications using methanotrophic bacteria in wastewater treatment systems.
Collapse
Affiliation(s)
- Rana Salem
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
| | - Ahmed ElDyasti
- Department of Civil Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Gerald F. Audette
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- The Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Saidi-Mehrabad A, Kits DK, Kim JJ, Tamas I, Schumann P, Khadka R, Strilets T, Smirnova AV, Rijpstra WIC, Sinninghe Damsté JS, Dunfield PF. Methylicorpusculum oleiharenae gen. nov., sp. nov., an aerobic methanotroph isolated from an oil sands tailings pond. Int J Syst Evol Microbiol 2020; 70:2499-2508. [DOI: 10.1099/ijsem.0.004064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0–3.3 µm in length and 1.0–1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and
Methylomicrobium
were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class
Gammaproteobacteria
and family
Methylococcaceae
, most closely related to members of the genera
Methylomicrobium
and
Methylobacter
(95.0–97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA–DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.
Collapse
Affiliation(s)
- Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Dimitri K. Kits
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ivica Tamas
- Departman Za Biologiju I Ekologiju, Prirodno-Matematicki Fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Peter Schumann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures. Inhoffenstr. 7 B 38124 Braunschweig, Germany
| | - Roshan Khadka
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Tania Strilets
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Angela V. Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
4
|
Ghashghavi M, Belova SE, Bodelier PLE, Dedysh SN, Kox MAR, Speth DR, Frenzel P, Jetten MSM, Lücker S, Lüke C. Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. mSphere 2019; 4:e00631-18. [PMID: 31167950 PMCID: PMC6553558 DOI: 10.1128/msphere.00631-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mohammad Ghashghavi
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Martine A R Kox
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Daan R Speth
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Peter Frenzel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Boinovich LB, Kaminsky VV, Domantovsky AG, Emelyanenko KA, Aleshkin AV, Zulkarneev ER, Kiseleva IA, Emelyanenko AM. Bactericidal Activity of Superhydrophobic and Superhydrophilic Copper in Bacterial Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2832-2841. [PMID: 30685974 DOI: 10.1021/acs.langmuir.8b03817] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A method based on nanosecond laser processing was used to design superhydrophilic and superhydrophobic copper substrates. Three different protocols were used to analyze the evolution of the bactericidal activity of the copper substrates with different wettability. Scanning electron microscopy was used to study the variation of cell morphology after the attachment to superhydrophilic and superhydrophobic surfaces. The dispersions of Escherichia coli K12 C600 and Klebsiella pneumoniae 811 in Luria Bertani broth in contact with the superhydrophilic copper surface showed enhanced bacterial inactivation, associated with toxic action of both hierarchically textured copper surface and high content of Cu2+ ions in the dispersion medium. In contrast, the bacterial dispersions in contact with the superhydrophobic copper substrates demonstrated an increase in cell concentration with time until the development of corrosion processes. The resistance of bacterial cells to contact the copper substrates is discussed on the basis of surface forces, determining the primary adhesion and of the protective action of a superhydrophobic state of the surface against electrochemical and biological corrosion.
Collapse
Affiliation(s)
- Ludmila B Boinovich
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Valery V Kaminsky
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Alexandr G Domantovsky
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Kirill A Emelyanenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Andrey V Aleshkin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Eldar R Zulkarneev
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Irina A Kiseleva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Alexandre M Emelyanenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| |
Collapse
|
6
|
Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. BIORESOURCE TECHNOLOGY 2016; 215:314-323. [PMID: 27146469 DOI: 10.1016/j.biortech.2016.04.099] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 05/12/2023]
Abstract
Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.
| | - M Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA 92182-4614, United States
| | - J Silverman
- Calysta, 1140 O'Brien Drive, Menlo Park, CA 94025, United States
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
7
|
Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4001-18. [PMID: 25723373 DOI: 10.1021/es504242n] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - S Xie
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|