1
|
Rao JH, Zhang WD, Zha CP, Zhang MY, Xing YJ, Wang ZH, Yu JX, He DY, Sun CZ, Li L. Plasma proteins mediate the effects of the gut microbiota on the development of head and neck cancer: a two-sample and mediated Mendelian randomized study. Discov Oncol 2025; 16:202. [PMID: 39969766 PMCID: PMC11839960 DOI: 10.1007/s12672-025-01983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Although previous observational studies have highlighted a possible association between the gut microbiota (GM) and head and neck cancer (HNC), the causal relationships remain unclear, particularly regarding the role of plasma proteins as potential mediators. Clarifying these connections is essential for uncovering the underlying mechanisms of HNC progression and may lead to new therapeutic strategies. MATERIALS AND METHODS First, we examined the causal link between the GM and HNC via a two-sample Mendelian randomization (MR) approach. We then investigated the causative relationships between plasma proteins and HNC via the same two-sample MR technique. The coefficient product approach was then used to clarify the role of plasma proteins in the causative pathway between the GM and HNC. Finally, sensitivity investigations were performed to assess the robustness and coherence of the results. RESULTS MR analyses revealed the protective effects of one family and six genera on HNC (Lachnospiraceae, Parabacteroides, Phascolarctobacterium, Alistipes, Sutterella, Roseburia and Alloprevotella). In contrast, three genera (Ruminococcus, Prevotella and Bacteroides) were significantly positively associated with HNC risk. Through further examination, researchers discovered 18 plasma proteins that have a causal relationship with HNC. Notably, the mediation MR illustrated that the causal protective effect of OTU97_86 (Phascolarctobacterium) on HNC (total effect IVW: OR = 0.879, 95% = 0.810-0.954, p = 0.002) was mediated by Proteasome subunit alpha type-1 (PSMA1) (- 0.020, 95% CI = - 0.039 ~ - 0.001, p = 0.036), accounting for 15.25% of the total effect. Similarly, the causal effect of OTU99_35 (Ruminococcus) on HNC risk (total effect IVW: OR = 1.109, 95% CI = 1.027-1.198, p = 0.008) was mediated by the protein FAM107B (0.015, 95% CI = 0.001-0.029, p = 0.031), accounting for 14.69% of the total effect. CONCLUSION MR and mediation analysis revealed that specific GMs influence HNC risk through plasma proteins: Phascolarctobacterium protects against HNC via PSMA1, whereas Ruminococcus increases HNC risk through FAM107B. These pathways suggest that Phascolarctobacterium is a potential preventative factor and that Ruminococcus is a risk factor. This highlights the possibility of using specific GM and plasma proteins as biomarkers or therapeutic targets for HNC prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jin-Hui Rao
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Wen-Da Zhang
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Cheng-Peng Zha
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Min-Yue Zhang
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Yu-Jie Xing
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Zai-Hui Wang
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Jun-Xian Yu
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Dong-Yan He
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China
| | - Chuan-Zheng Sun
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China.
| | - Lei Li
- Department of Head and Neck Surgery Section II, The Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
2
|
Contini C, Manconi B, Olianas A, Guadalupi G, Schirru A, Zorcolo L, Castagnola M, Messana I, Faa G, Diaz G, Cabras T. Combined High-Throughput Proteomics and Random Forest Machine-Learning Approach Differentiates and Classifies Metabolic, Immune, Signaling and ECM Intra-Tumor Heterogeneity of Colorectal Cancer. Cells 2024; 13:1311. [PMID: 39195201 PMCID: PMC11352245 DOI: 10.3390/cells13161311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming and epithelial-mesenchymal transition (EMT) were investigated with explorative shotgun proteomics complemented by a Random Forest (RF) machine-learning approach. Deep and superficial tumor regions and distant-site non-tumor samples from the same patients (n = 16) were analyzed. Among the 2009 proteins analyzed, 91 proteins, including 23 novel potential CRC hallmarks, showed significant quantitative changes. In addition, a 98.4% accurate classification of the three analyzed tissues was obtained by RF using a set of 21 proteins. Subunit E1 of 2-oxoglutarate dehydrogenase (OGDH-E1) was the best classifying factor for the superficial tumor region, while sorting nexin-18 and coatomer-beta protein (beta-COP), implicated in protein trafficking, classified the deep region. Down- and up-regulations of metabolic checkpoints involved different proteins in superficial and deep tumors. Analogously to immune checkpoints affecting the TME, cytoskeleton and extracellular matrix (ECM) dynamics were crucial for EMT. Galectin-3, basigin, S100A9, and fibronectin involved in TME-CRC-ECM crosstalk were found to be differently variated in both tumor regions. Different metabolic strategies appeared to be adopted by the two CRC regions to uncouple the Krebs cycle and cytosolic glucose metabolism, promote lipogenesis, promote amino acid synthesis, down-regulate bioenergetics in mitochondria, and up-regulate oxidative stress. Finally, correlations with the Dukes stage and budding supported the finding of novel potential CRC hallmarks and therapeutic targets.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Giulia Guadalupi
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Alessandra Schirru
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Luigi Zorcolo
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Giacomo Diaz
- Department of Biomedical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy;
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| |
Collapse
|
3
|
Ma J, Wang J, Ghoraie LS, Men X, Haibe-Kains B, Dai P. Network-based approach to identify principal isoforms among four cancer types. Mol Omics 2019; 15:117-129. [PMID: 30720033 DOI: 10.1039/c8mo00234g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein isoforms are structurally similar proteins produced by alternative splicing of a single gene or genes from the same family. Isoforms of a protein can perform the same, similar, or even opposite biological functions. A previous study identified principal isoforms of proteins based on the extent of interactions per isoform in a functional relationship network, focusing on data from normal tissues. Additionally, the expression levels of specific isoforms of various genes associated with tumorigenesis and prognosis are frequently altered in tumors compared with those in normal tissues. In this study, we aimed to identify higher degree isoforms (HDIs) of multi-isoform genes (MIGs) in cancer by applying a meta-analytical framework to calculate co-expression between each pair of isoforms in two large datasets of RNA-seq profiles from breast cancer, lung cancer, leukemia, and colon cancer cell lines. Then, we compared HDIs with isoforms identified by proteomic data and prognostic and predictive evidence in various cancers. In addition, we separately analyzed the associations between HDIs and non-HDIs (nHDIs) of the same genes according to transcript expression and drug responses in various cancer type cell lines. Collectively, these results indicated the complex properties of HDIs per gene identified by cancer type-based isoform-isoform co-expression networks and showed the potential of HDIs as novel therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Jun Ma
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, P. R. China. and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jenny Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laleh Soltan Ghoraie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xin Men
- Microbiology Institute of Shaanxi, China and National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, P. R. China.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, P. R. China.
| |
Collapse
|
4
|
Identification of actin beta-like 2 (ACTBL2) as novel, upregulated protein in colorectal cancer. J Proteomics 2016; 152:33-40. [PMID: 27989943 DOI: 10.1016/j.jprot.2016.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/11/2022]
Abstract
Early diagnosis of colorectal cancer (CRC) can be of value for increasing the survival rate of patients. Recently, proteomic strategies to identify markers for the diagnosis of cancer at an early stage have been employed with noteworthy results. To extend these studies, we utilized two dimensional gel electrophoresis and mass spectrometry for expression profiling of proteins extracted from the freshly frozen human colorectal cancer tissue specimens and the comparable regions of adjacent normal mucosa (serving as controls). Four gel spots were determined to be differentially stained between the tumor and the control samples on a consistent basis. Following mass spectrometric analysis of these spots, six proteins were identified; five of these had previously been reported to be associated with colorectal cancer. One protein actin beta-like 2 (ACTBL2), not linked with colorectal cancer in the earlier reports, was however found to be at higher abundance in colorectal tumor samples both by proteomics and immunohistochemistry analysis. Thus ACTBL2 association and differential upregulation in colorectal cancer is novel, and as such may contribute to our understanding of the colorectal carcinogenesis and potentially serve a function in developing markers for colorectal cancer. BIOLOGICAL SIGNIFICANCE Colorectal cancer (CRC) is a major cause of death world-wide and good markers for early detection are lacking. In this study we conducted a proteomic analysis of tumor vs. normal tissue. We corroborated the finding of a number of previously identified proteins associated with CRC and more importantly identified a novel protein, ACTBL2, which we demonstrated to be upregulated in CRC. As additional proteins associated with CRC are identified the potential for developing panels of markers may be realized with better outcomes in early cancer detection.
Collapse
|
5
|
Kwon OK, Sim J, Kim SJ, Sung E, Kim JY, Jeong TC, Lee S. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes. J Proteome Res 2015; 14:5215-24. [PMID: 26487105 DOI: 10.1021/acs.jproteome.5b00812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - JuHee Sim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Eunji Sung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center, Korea Basic Science Institute , Ochang, Chungbuk 28115, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan 38541, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Paulo JA, Gaun A, Gygi SP. Global Analysis of Protein Expression and Phosphorylation Levels in Nicotine-Treated Pancreatic Stellate Cells. J Proteome Res 2015; 14:4246-56. [PMID: 26265067 DOI: 10.1021/acs.jproteome.5b00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Smoking is a risk factor in pancreatic disease; however, the biochemical mechanisms correlating smoking with pancreatic dysfunction remain poorly understood. Strategies using multiplexed isobaric tag-based mass spectrometry facilitate the study of drug-induced perturbations on biological systems. Here, we present the first large-scale analysis of the proteomic and phosphoproteomic alterations in pancreatic stellate cells following treatment with two nicotinic acetylcholine receptor (nAChR) ligands: nicotine and α-bungarotoxin. We treated cells with nicotine or α-bungarotoxin for 12 h in triplicate and compared alterations in protein expression and phosphorylation levels to mock-treated cells using a tandem mass tag (TMT9plex)-based approach. Over 8100 proteins were quantified across all nine samples, of which 46 were altered in abundance upon treatment with nicotine. Proteins with increased abundance included those associated with neurons, defense mechanisms, indicators of pancreatic disease, and lysosomal proteins. In addition, we measured differences for ∼16 000 phosphorylation sites across all nine samples using a titanium dioxide-based strategy, of which 132 sites were altered with nicotine and 451 with α-bungarotoxin treatment. Many altered phosphorylation sites were involved in nuclear function and transcriptional events. This study supports the development of future targeted investigations to establish a better understanding for the role of nicotine and associated receptors in pancreatic disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Aleksandr Gaun
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Grigoryeva ES, Cherdyntseva NV, Karbyshev MS, Volkomorov VV, Stepanov IV, Zavyalova MV, Perelmuter VM, Buldakov MA, Afanasjev SG, Tuzikov SA, Bukurova YA, Lisitsyn NA, Beresten SF. Expression of Cyclophilin A in Gastric Adenocarcinoma Patients and Its Inverse Association with Local Relapses and Distant Metastasis. Pathol Oncol Res 2013; 20:467-73. [DOI: 10.1007/s12253-013-9718-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
|
8
|
Telikicherla D, Marimuthu A, Kashyap MK, Ramachandra YL, Mohan S, Roa JC, Maharudraiah J, Pandey A. Overexpression of ribosome binding protein 1 (RRBP1) in breast cancer. Clin Proteomics 2012; 9:7. [PMID: 22709790 PMCID: PMC3439379 DOI: 10.1186/1559-0275-9-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023] Open
Abstract
The molecular events that lead to malignant transformation and subsequent metastasis of breast carcinoma include alterations in the cells at genome, transcriptome and proteome levels. In this study, we used publicly available gene expression databases to identify those candidate genes which are upregulated at the mRNA level in breast cancers but have not been systematically validated at the protein level. Based on an extensive literature search, we identified ribosome binding protein 1 (RRBP1) as a candidate that is upregulated at the mRNA level in five different studies but its protein expression had not been investigated. Immunohistochemical labeling of breast cancer tissue microarrays was carried out to determine the expression of RRBP1 in a large panel of breast cancers. We found that RRBP1 was overexpressed in 84% (177/219) of breast carcinoma cases tested. The subcellular localization of RRBP1 was mainly observed to be in the cytoplasm with intense staining in the perinuclear region. Our findings suggest that RRBP1 is an interesting molecule that can be further studied for its potential to serve as a breast cancer biomarker. This study also demonstrates how the integration of biological data from available resources in conjunction with systematic evaluation approaches can be successfully applied to clinical proteomics.
Collapse
Affiliation(s)
- Deepthi Telikicherla
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta 577451, India
| | | | - Manoj Kumar Kashyap
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
| | - Y L Ramachandra
- Department of Biotechnology, Kuvempu University, Shankaraghatta 577451, India
| | - Sujatha Mohan
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
- Research Unit for Immunoinformatics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Juan Carlos Roa
- Department of Pathology, Universidad de La Frontera, Temuco, Chile
| | - Jagadeesha Maharudraiah
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
- Department of Pathology and Laboratory Medicine, Icon Hospitals, Bangalore 560027, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Grigorieva ES, Bukurova YA, Krasnov GS, Afanas’ev SG, Cherdyntseva NV, Tuzikov SA, Choinzonov EL, Karpov VL, Lisitsyn NA, Beresten SF. Identification of proteins overexpressed in malignant gastric tumors: Comparison of results obtained by 2DE and bioinformatic search. Mol Biol 2011. [DOI: 10.1134/s0026893311030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bukurova YA, Nikitina IG, Khankin SL, Krasnov GS, Lisitsyn NA, Karpov VL, Beresten SF. Search for protein markers for serum diagnostics of tumors by analysis of microRNA expression profiles. Mol Biol 2011. [DOI: 10.1134/s0026893311020038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Global expression study in colorectal cancer on proteins with alkaline isoelectric point by two-dimensional difference gel electrophoresis. J Proteomics 2011; 74:858-73. [PMID: 21385629 DOI: 10.1016/j.jprot.2011.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 01/01/2023]
Abstract
Colorectal cancer is one of the leading causes of cancer death worldwide. To identify candidates for biomarkers and therapeutic targets, we investigated the proteome of colorectal cancer tissues. Using 2D-DIGE in combination with our original large format electrophoresis apparatus, we compared surgically resected normal and tumor tissues from 53 patients with colorectal cancer. We focused on proteins with an alkaline pI using IPG gels for the alkaline range. We observed 1687 protein spots, and found 100 spots with statistical (p<0.01) and significant (>2-fold) differences between the normal and the tumor tissue groups. Among these 100 protein spots, five showed a different intensity between tumor tissues from the stage-II and the stage-III patients. MS experiments revealed that these 100 protein spots corresponded to 58 unique proteins. These included six proteins which had not been previously reported to be associated with colorectal cancer. Among these proteins, five were not reported in any type of malignancy. IEF/western blotting confirmed the differences in protein expression between the normal and the tumor tissues. These results may provide an insight for biomarker development and drug target discovery in colorectal cancer.
Collapse
|
12
|
Deficiency of SATB1 expression in Sezary cells causes apoptosis resistance by regulating FasL/CD95L transcription. Blood 2011; 117:3826-35. [PMID: 21270445 DOI: 10.1182/blood-2010-07-294819] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sézary syndrome (SS) is an aggressive subtype of cutaneous T-cell lymphoma that is characterized by circulating leukemic Sézary cells. The accumulation of these malignant cells has been shown to be the result of the resistance to apoptosis, in particular, activation-induced cell death. However, the mechanism of apoptosis resistance remains unknown. By characterizing the gene transcription profiles of purified CD4(+)CD7(-) Sézary cells from patients with SS and cultured Sézary cells, it was found that Sézary cells are deficient in the expression of special AT-rich region binding protein 1 (SATB1), a key regulator of T-cell development and maturation. Retrovirus-mediated gene transduction revealed that SATB1 restoration in cultured Sézary cells (Hut78) triggered spontaneous cell death and sensitized Hut78 cells to activation-induced cell death, with associated activation of caspase 8 and caspase 3. Furthermore, endogenous expression of FasL in Sézary cells was increased in transcriptional and translational levels on restoration of SATB1 expression in cultured Sézary cells. These results suggest that deficiency in SATB1 expression in Sézary cells plays an important role in SS pathogenesis by causing apoptosis resistance. Thus, restoration of SATB1 expression may represent a potential molecular targeted therapy for SS, which does not have a cure at present.
Collapse
|
13
|
Bukurova YA, Khankin SL, Krasnov GS, Grigor’eva ES, Mashkova TD, Lisitsyn NA, Karpov VL, Beresten’ SF. Estimation of the efficiency of 2D analysis and bioinformatics search in identification of protein markers for colon tumors. Mol Biol 2010. [DOI: 10.1134/s0026893310020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|