1
|
Oligomerization analysis as a tool to elucidate the mechanism of EBV latent membrane protein 1 inhibition by pentamidine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183380. [DOI: 10.1016/j.bbamem.2020.183380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
|
2
|
Lesovoy DM, Mineev KS, Bragin PE, Bocharova OV, Bocharov EV, Arseniev AS. NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix-helix interactions in membrane proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 69:165-179. [PMID: 29063258 DOI: 10.1007/s10858-017-0146-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of various NMR parameters that can be used for mapping of helix-helix interfaces in dimeric TM domains. These parameters are studied on a dataset containing three structures of helical dimers obtained for two different proteins in various membrane mimetics. We conclude that the amide chemical shifts have very little predictive value, while the methyl chemical shifts could be used to predict interfaces, though with great care. We suggest an approach based on conversion of the carbon NMR relaxation parameters of methyl groups into parameters of motion, and one of such values, the characteristic time of methyl rotation, appears to be a reliable sensor of interhelix contacts in transmembrane domains. The carbon NMR relaxation parameters of methyl groups can be measured accurately and with high sensitivity and resolution, making the proposed parameter a useful tool for investigation of protein-protein interfaces even in large membrane proteins. An approach to build the models of transmembrane dimers based on perturbations of methyl parameters and TMDOCK software is suggested.
Collapse
Affiliation(s)
- D M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudny, Russian Federation, 141700
| | - P E Bragin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997
- Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow, Russian Federation, 119991
| | - O V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudny, Russian Federation, 141700
| | - E V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997.
- Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudny, Russian Federation, 141700.
- National Research Centre "Kurchatov Institute", Kurchatov Complex of NBICS-technologies, Akad. Kurchatova Sqr., 1, Moscow, Russian Federation, 123182.
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, Str. Miklukho-Maklaya 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudny, Russian Federation, 141700
| |
Collapse
|
3
|
Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1254-61. [PMID: 26903218 DOI: 10.1016/j.bbamem.2016.02.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The human epidermal growth factor receptor (EGFR) of HER/ErbB receptor tyrosine kinase family mediates a broad spectrum of cellular responses transducing biochemical signals via lateral dimerization in plasma membrane, while inactive receptors can exist in both monomeric and dimeric forms. Recently, the dimeric conformation of the helical single-span transmembrane domains of HER/ErbB employing the relatively polar N-terminal motifs in a fashion permitting proper kinase activation was experimentally determined. Here we describe the EGFR transmembrane domain dimerization via an alternative weakly polar C-terminal motif A(661)xxxG(665) presumably corresponding to the inactive receptor state. During association, the EGFR transmembrane helices undergo a structural adjustment with adaptation of inter-molecular polar and hydrophobic interactions depending upon the surrounding membrane properties that directly affect the transmembrane helix packing. This might imply that signal transduction through membrane and allosteric regulation are inclusively mediated by coupled protein-protein and protein-lipid interactions, elucidating paradoxically loose linkage between ligand binding and kinase activation.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
| | - Dmitry M Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Yulia E Pustovalova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga V Bocharova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Alexander S Arseniev
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
4
|
Bocharov EV, Mineev KS, Goncharuk MV, Arseniev AS. Structural and thermodynamic insight into the process of “weak” dimerization of the ErbB4 transmembrane domain by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2158-70. [DOI: 10.1016/j.bbamem.2012.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/20/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|
5
|
Baghbani-arani F, Roohvandv F, Aghasadeghi MR, Eidi A, Amini S, Motevalli F, Sadat SM, Memarnejadian A, Khalili G. Expression and characterization of Escherichia coli derived hepatitis C virus ARFP/F protein. Mol Biol 2012. [DOI: 10.1134/s0026893312020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|