1
|
Aslan N, Aksakal B, Aksoy ME. Boron-incorporated biocomposite coatings on 316L and NiTi alloys: Enhanced structural, antibacterial activity, and cell viability performances. Proc Inst Mech Eng H 2022; 236:1572-1580. [DOI: 10.1177/09544119221122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Boron doped (5 %, 10%, and 15 wt.%) Hydroxyapatite (B-HA) biocomposites were syntesized and coated on 316L SS and NiTi (Ni-45Ti) metallic substrates by using the electrophoretic deposition process (EPD). The morphological and structural characterization of the coatings was executed using scanning electron microscopy (SEM) and X-ray diffraction devices (XRD). Antibacterial tests were conducted using Escherichia coli ( E. coli, JM103) and Staphylococcus aureus ( S. aureus, ATCC29293) microorganisms. The mitochondrial activity assay (MTT)-[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was used to examine cell viability and cytotoxicity in Saos-2 osteoblast cells. HA and boron peaks, as well as B-TCP and metallic components, were detected in XRD examinations. Porous morphologies were generated on the surface with boron doped B-HA coatings, as revealed by SEM views. Antibacterial activity studies revealed that both metallic coating groups, notably with boron doping, demonstrated antibacterial activity against gram-negative E. coli and gram-positive S. aureus. The antibacterial activity of the 316L group was shown to be better than that of the NiTi group in comparisonal testing. The syntesized boron-doped biocomposite coatings did not have any detrimental effects on living cells, according to cell viability studies. The cell viability rate was found to be greater in NiTi coatings than in 316 SS coatings, and the impact was amplified by the addition of boron.
Collapse
Affiliation(s)
- N Aslan
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey
| | - B Aksakal
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgy, Yildiz Technical University, Istanbul, Turkey
| | - ME Aksoy
- Institute of Post Graduate Education, Munzur University, Tunceli, Turkey
| |
Collapse
|
2
|
Grischenko DN, Papynov EK, Medkov MA. Using the Extraction–Pyrolysis Method in Synthesis of Bioactive Glass. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521320014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Grishchenko DN, Slobodyuk AB, Kuryavyi VG, Medkov MA. Tantalum-Containing Bioactive Glass-Ceramics: A Mechanism of Suppression of the Biological Activity of the 45S5 Bioglass by Doping with Ta2O5. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|