1
|
Vikal S, Meena S, Gautam YK, Kumar A, Sethi M, Meena S, Gautam D, Singh BP, Agarwal PC, Meena ML, Parewa V. Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst. Sci Rep 2024; 14:22430. [PMID: 39341891 PMCID: PMC11438909 DOI: 10.1038/s41598-024-72713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Nitroaromatic compounds represent a class of highly toxic pollutants discharged into aquatic environments by various industrial activities, posing significant threats to ecological integrity and human health due to their persistent and hazardous nature. In this study, Pd-doped ZnO nanoparticles were investigated as a potential solution for the degradation of nitro organics, offering heightened photocatalytic efficacy and prolonged stability. The synthesis of Pd-doped ZnO NPs was achieved via the hydrothermal method, with subsequent analysis through XRD spectra and XPS confirming successful Pd doping within the ZnO matrix. Characterization through FESEM and HRTEM unveiled the heterogeneous morphologies of both undoped and Pd-doped ZnO nanoparticles. Additionally, UV-vis and PL spectroscopy provided insights into the optical properties, chemical bonding, and defect structures of the synthesized Pd-doped ZnO NPs. Pd doping induces a redshift in ZnO's absorption spectra, reducing the bandgap from 3.12 to 2.94 eV as Pd concentration rises from 0 to 0.2 wt.%. The photocatalytic degradation, following pseudo-first-order kinetics, achieved 90% nitrobenzene abatement (200 µg/L, pH 7) under visible light within 320 min with a catalyst loading of 16 µg/mL. The photocatalytic efficacy of 0.08 wt% Pd-doped ZnO (k = 0.058 min⁻1) exhibited a 25-fold enhancement compared to bare ZnO (k = 3.1 × 10-4 min-1). Subsequent quenching and ESR experiments identified hydroxyl radicals (OH•) as the predominant active species in the degradation mechanism. Mass spectrometry analysis unveiled potential breakdown intermediates, illuminating a plausible degradation pathway. The investigated Pd-doped ZnO nanoparticles demonstrated reusability for up to five successive treatment cycles, offering a sustainable solution to nitro organics contamination challenges.
Collapse
Affiliation(s)
- Sagar Vikal
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India.
| | - Ashwani Kumar
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India.
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Durvesh Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Prakash Chandra Agarwal
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India
| | - Mohan Lal Meena
- Department of Chemical Engineering, National Institute of Technology Karnataka - Surathkal, Srinivasnagar P.O, Mangalore, Karnataka, 575025, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.
| |
Collapse
|
2
|
Adamou P, Harkou E, Hafeez S, Manos G, Villa A, Al-Salem SM, Constantinou A, Dimitratos N. Recent progress on sonochemical production for the synthesis of efficient photocatalysts and the impact of reactor design. ULTRASONICS SONOCHEMISTRY 2023; 100:106610. [PMID: 37806038 PMCID: PMC10568290 DOI: 10.1016/j.ultsonch.2023.106610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Sonochemical-assisted synthesis has flourished recently for the design of photocatalysts. The main power used is ultrasound that allows the nanomaterials shape and size modification and control. This review highlights the effect in formation mechanism by ultrasound application and the most common photocatalysts that were prepared via sonochemical techniques. Moreover, the challenge for the suitable reactor design for the synthesis of materials or for their photocatalytic evaluation is discussed since the most prominent reactor systems, batch, and continuous flow, has both advantages and drawbacks. This work summarises the significance of sonochemical synthesis for photocatalytic materials as a green technology that needs to be further investigated for the preparation of new materials and the scale up of developed reactor systems to meet industrial needs.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Sanaa Hafeez
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, the United Kingdom of Great Britain and Northern Ireland
| | - George Manos
- Department of Chemical Engineering, University College London, London WCIE 7JE, the United Kingdom of Great Britain and Northern Ireland
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Achilleas Constantinou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus.
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4 40136 Bologna, Italy.
| |
Collapse
|
3
|
Nan R, Liu S, Zhai M, Zhu M, Sun X, Chen Y, Pang Q, Zhang J. Facile Synthesis of Cu-Doped ZnO Nanoparticles for the Enhanced Photocatalytic Disinfection of Bacteria and Fungi. Molecules 2023; 28:7232. [PMID: 37894712 PMCID: PMC10609236 DOI: 10.3390/molecules28207232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, Cu-doped ZnO was prepared via the facile one-pot solvothermal approach. The structure and composition of the synthesized samples were characterized by XRD (X-ray diffraction), TEM (transmission electron microscopy), and XPS (X-ray photoelectron spectroscopy) analyses, revealing that the synthesized samples consisted of Cu-doped ZnO nanoparticles. Ultraviolet-visible (UV-vis) spectroscopy analysis showed that Cu-doping significantly improves the visible light absorption properties of ZnO. The photocatalytic capacity of the synthesized samples was tested via the disinfection of Escherichia coli, with the Cu-ZnO presenting enhanced disinfection compared to pure ZnO. Of the synthesized materials, 7% Cu-ZnO exhibited the best photocatalytic performance, for which the size was ~9 nm. The photocurrent density of the 7% Cu-ZnO samples was also significantly higher than that of pure ZnO. The antifungal activity for 7% Cu-ZnO was also tested on the pathogenic fungi of Fusarium graminearum. The macroconidia of F. graminearum was treated with 7% Cu-ZnO photocatalyst for 5 h, resulting in a three order of magnitude reduction at a concentration of 105 CFU/mL. Fluorescence staining tests were used to verify the survival of macroconidia before and after photocatalytic treatment. ICP-MS was used to confirm that Cu-ZnO met national standards for cu ion precipitation, indicating that Cu-ZnO are environmentally friendly materials.
Collapse
Affiliation(s)
- Ruichun Nan
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China
- School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shurui Liu
- School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Luohe Weilong Biotechnology Co., Ltd., Luohe 462000, China
| | - Mengwan Zhai
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China
- School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Mengzhen Zhu
- School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiaodong Sun
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China
| | - Yisong Chen
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China
| | - Qiangqiang Pang
- The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China
| | - Jingtao Zhang
- School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
4
|
Vu AT, Mac VH, Nguyen TH, Nguyen TH. Preparation of carnation-like Ag-ZnO composites for enhanced photocatalysis under visible light. NANOTECHNOLOGY 2023; 34:275602. [PMID: 37015211 DOI: 10.1088/1361-6528/acca24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Carnation-like ZnO was synthesized by the facile precipitation method (at room temperature and in 120 min) to decompose dyes in an aqueous medium. The carnation-like ZnO had a stratified porous structure with a size of about 2-3μm, its petals had a smooth surface with a thickness of 5-10 nm and a width of about 300-500 nm. Ag-ZnO composites were synthesized using glucose with the assistance of PVP. The morphology of Ag-ZnO composites was almost unchanged compared to ZnO. Where, the Ag nanoparticles in the size range of 5-15 nm were uniformly dispersed on the ZnO petals, improving the catalytic ability of the composites in tartrazine (TA) degradation. The influence of Ag content on catalytic structure and performance of composite was studied. The 5Ag-ZnO sample had the highest BET surface area and pore volume and the lowest gap energy (Eg) among the as-synthesized samples. The 5Ag-ZnO sample proclaimed the degradation efficiency in 70 min of 97.8% and thekapof 0.031 min-1. The influences of catalyst content, solution pH, and concentration of dye on the photodegradation efficiency of the composite were thoroughly studied. Besides, the photocatalytic activity of the composite was demonstrated by degrading various organic substances and reusability. In addition, it was compared to a metal-semiconductor catalyst of Au-ZnO and semiconductor-semiconductor catalysts of MoS2-ZnO, Cu2O-ZnO, and SiO2-ZnO. The catalytic mechanism under visible light was proposed.
Collapse
Affiliation(s)
- Anh-Tuan Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Van Hung Mac
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thanh Hung Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thu Huong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
5
|
Phattranit Dumrongrojthanath, Phuruangrat A, Sakhon T, Thongtem T, Thongtem S. Effect of Gd Dopant on Visible-Light-Driven Photocatalytic Properties of CeO2 Nanowires Synthesized Microwave-Assisted Hydrothermal Method. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622600757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shtareva AV, Shtarev DS, Balanov MI, Krutikova VO, Astapov IA. Bismuthyl Carbonate Heterostructures Are a Way to Enhance the Photocatalytic Activity of Alkaline-Earth Bismuthates. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622090157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abdurakhmonov OE, Alisultanov ME, Vertaeva DA, Muradova AG. The Effect of Annealing Temperature on Crystallization of Nd2O3 Nanoparticles Synthesized by the Deposition Method. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|