1
|
Lamy H, Bullier-Marchandin E, Pointel C, Echalard A, Ladam GD, Lutzweiler G. Kinetic Study of the Esterase-like Activity of Albumin following Condensation by Macromolecular Crowding. Biomacromolecules 2024; 25:2803-2813. [PMID: 38629692 DOI: 10.1021/acs.biomac.3c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The ability of bovine serum albumin (BSA) to form condensates in crowded environments has been discovered only recently. Effects of this condensed state on the secondary structure of the protein have already been unraveled as some aging aspects, but the pseudo-enzymatic behavior of condensed BSA has never been reported yet. This article investigates the kinetic profile of para-nitrophenol acetate hydrolysis by BSA in its condensed state with poly(ethylene) glycol (PEG) as the crowding agent. Furthermore, the initial BSA concentration was varied between 0.25 and 1 mM which allowed us to modify the size distribution, the volume fraction, and the partition coefficient (varying from 136 to 180). Hence, the amount of BSA originally added was a simple way to modulate the size and density of the condensates. Compared with dilute BSA, the initial velocity (vi) with condensates was dramatically reduced. From the Michaelis-Menten fits, the extracted Michaelis constant Km and the maximum velocity Vmax decreased in control samples without condensates when the BSA concentration increased, which was attributed to BSA self-oligomerization. In samples containing condensates, the observed vi was interpreted as an effect of diluted BSA remaining in the supernatants and from the condensates. In supernatants, the crowding effect of PEG increased the kcat and catalytic efficiency. Last, Vmax was proportional to the volume fraction of the condensates, which could be controlled by varying its initial concentration. Hence, the major significance of this article is the control of the size and volume fraction of albumin condensates, along with their kinetic profile using liquid-liquid phase separation.
Collapse
Affiliation(s)
- Honorine Lamy
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | | | - Cléo Pointel
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Aline Echalard
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Guy Daniel Ladam
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Gaëtan Lutzweiler
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| |
Collapse
|
2
|
Mezzina L, Nicosia A, Barone L, Vento F, Mineo PG. Water-Soluble Star Polymer as a Potential Photoactivated Nanotool for Lysozyme Degradation. Polymers (Basel) 2024; 16:301. [PMID: 38276709 PMCID: PMC10819795 DOI: 10.3390/polym16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies.
Collapse
Affiliation(s)
- Lidia Mezzina
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Laura Barone
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Fabiana Vento
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via P. Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
3
|
Cook AB, Gonzalez BD, van Hest JCM. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Biomacromolecules 2024; 25:425-435. [PMID: 38064593 PMCID: PMC10777345 DOI: 10.1021/acs.biomac.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.
Collapse
Affiliation(s)
- Alexander B Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bruno Delgado Gonzalez
- Departamento
de Química Orgánica, Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Jan C M van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
- Biomedical
Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
4
|
Li Y, Koopal LK, Chen Y, Shen A, Tan W. Conformational modifications of lysozyme caused by interaction with humic acid studied with spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144858. [PMID: 33453531 DOI: 10.1016/j.scitotenv.2020.144858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Modification of enzyme/protein conformation will affect the activities and functionality of enzymes. Previous studies have shown that the activity of lysozyme (LSZ) in the presence of humic acid (HA) is largely determined by the mass ratio of HA/LSZ (f = mHA/mLSZ), pH and ionic strength. Here the interaction and conformation of LSZ in HA/LSZ-complex/aggregate (HA/LSZ-c/a) were investigated by spectroscopic techniques at (initial) pH 5 and 8 and ionic strength 5 mmol/L. The results indicated a strong interaction between HA and LSZ. Circular dichroism (CD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the helix content reached a minimum at the mass ratio of its iso electric point (IEP) at given initial pH, fIEP,pHi. The changes in β-sheet and random coil of HA/LSZ-c/a were opposite with increasing f. The minimum of helix content at fIEP,pHi corresponded with the minimum LSZ activity and maximum aggregate size of HA/LSZ-c/a. UV-vis spectra and fluorescence measurements indicated that the amino acid residues (especially for tyrosine) in LSZ were in a more hydrophobic microenvironment before fIEP,pHi due to the formation of HA/LSZ-c/a, while were gradually exposed to a more polar microenvironment beyond fIEP,pHi with the disaggregation of HA/LSZ-c/a. HA and LSZ interaction caused a more hydrophobic microenvironment for the amino acid residues at initial pH 8. This study improves our understanding of enzyme/protein behavior in the natural environment.
Collapse
Affiliation(s)
- Yan Li
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Luuk K Koopal
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Yi Chen
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China.
| | - Alin Shen
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and α-cyclodextrin. Colloids Surf B Biointerfaces 2019; 176:276-287. [PMID: 30623815 DOI: 10.1016/j.colsurfb.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/20/2022]
Abstract
Self-assembled polypseudorotaxanes (PPRXs) fabricated with α-cyclodextrin and poly(ethylene glycol) (PEG) or its thiolated derivatives were candidate functional materials for enzyme soft-immobilization, encapsulation and controlled-release. The study of their interaction with Jack bean urease (JBU) indicated that they inconspicuously influenced the activity and stability of JBU during long storage, up to 30 days. The macro-species were inaccessible to JBU's active site and the steric effect might play a significant role in the stabilization of JBU, when compared with the small-molecular sulfhydryl inhibitor thioglycolic acid. Circular dichroism and fluorescence spectra analyses revealed that thiolated PEG400-(SH)2 and its assembly PPRX400(SH) brought in perturbations to certain α-helical or β-sheet domains of JBU, making JBU's conformation more flexible. The resulting partial unfolding of domains exposed several hydrophobic clusters and varied JBU's surface hydrophobicity. It also rendered the chromophores more hydrophilic and more bared to the polar environment, leading to the typical bathochromic-shift and quenching in intrinsic and synchronous fluorescence spectra. Moreover, the surface hydrophobicity profile of JBU was depicted by fluorescent probe monitoring and the unique "hydrophobic cave" motif was proposed by analyzing JBU's structural data from the Protein Data Bank. It should be pointed out that conformational variations mainly occurred at the surface region of JBU, while the buried active bi-nickel center was not markedly influenced by the macro-species. The results demonstrated that the PPRXs might act as a proper carrier for JBU encapsulation or soft-immobilization.
Collapse
|
6
|
Dubrovskii AV, Kochetkova OY, Kim AL, Musin EV, Seraya OY, Tikhonenko SA. Destruction of shells and release of a protein from microcapsules consisting of non-biodegradable polyelectrolytes. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1429436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey V. Dubrovskii
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
| | - Olga Yu. Kochetkova
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
| | - Aleksandr L. Kim
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Egor V. Musin
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Yu. Seraya
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
| | - Sergey A. Tikhonenko
- Russian Academy of Science, Institute of Theoretical and Experimental Biophysics, Puschino, Moscow Reg., Russian Federation
| |
Collapse
|
7
|
Detection of urea using urease and paramagnetic Fe3O4 particles incorporated into polyelectrolyte microcapsules. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu Y. Protein–polyelectrolyte interactions. SOFT MATTER 2013; 9:2553. [DOI: 10.1039/c2sm27002a] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|