1
|
Sinegovskaya VT. Scientific provision of an effective development of soybean breeding and seed production in the Russian Far East. Vavilovskii Zhurnal Genet Selektsii 2022; 25:374-380. [PMID: 35088007 PMCID: PMC8765769 DOI: 10.18699/vj21.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
In the Russian Far East, a highly profitable crop is soybean, which predominates in all farms' crop rotation in the region. An increase in this crop production occurs here both by increasing the sown area and increasing its yield. Therefore, in scientific institutions, great attention is paid to breeding varieties that can produce high yields in conditions with limited thermal resources with adaptation to the extreme soil and climatic conditions of the region's soybean growing zones. In 2020, 45 varieties developed by scientific institutions of the Far Eastern Federal District were introduced to the State Register of the Russian Federation and approved for use in production in code 12 region (Far Eastern), with the largest number of the entries coming from the All-Russian Scientific Research Institute of Soybeans. The share of cultivated areas in the Russian Far East occupied by domestic varieties was 63.7 %, the largest share of sown varieties - 48.9 % - belongs to the Federal Research Center All-Russian Scientific Research Institute of Soybean. The most popular were the varieties of the All-Russian Scientific Research Institute of Soybean, such as Alena, Kitrossa, Lydiya, Evgeniya, MK 100, Primorsky varieties (Musson, Primorskaya 4, Primorskaya 86, Primorskaya 96, Sphera) are in demand mainly in Primorsky Krai, and Khabarovsk varieties (Batya, Marinata) have an advantage in Khabarovsky Krai and the Jewish Autonomous Region. All varieties are not genetically modified and are created mainly by classical breeding methods. Breeders of the Federal State Budgetary Scientific Institution, "Federal Research Center of Agrobiotechnology of the Far East named after A.K. Chaika" and biotechnologists carry out the selection of pairs for crossing using biotechnological methods to assess their polymorphism, instead of long-term selection for phenotypic features in the field. Evaluation of domestic and foreign varieties for disease resistance revealed a high degree of damage to foreign varieties by dangerous viral and fungal diseases. Together with Japanese scientists from the University of Niigata, the astragalus mosaic virus was detected on Canadian and Chinese varieties in Primorsky Krai and the Amur Region using DNA analysis. The carrier of this disease is soybean aphid (Aphis glycines).
Collapse
Affiliation(s)
- V T Sinegovskaya
- Federal Scientific Center "All-Russian Scientific Research Institute of Soybeans", Blagoveschensk, Russia
| |
Collapse
|
2
|
Zhang L, Wu P, Li W, Feng T, Shockey J, Chen L, Zhang L, Lü S. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1735-1753. [PMID: 34643970 DOI: 10.1111/tpj.15540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.
Collapse
Affiliation(s)
- Lingling Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Pan Wu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P, Yuhong L. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int J Biol Macromol 2020; 158:S0141-8130(20)32981-0. [PMID: 32376256 DOI: 10.1016/j.ijbiomac.2020.04.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Information retrieved from genomic assembly may provide important clues and various molecular aspects in plants. Our research identified 40 CsHDZ genes in the Cucumber genome database. Subsequently; we performed the conserved motif and domain analysis of CsHDZ proteins. The phylogeny of the CsHDZ proteins further divides into 4 subfamilies (HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV) based on the structural similarities and functional diversities. The GO (Gene ontology) analysis of CsHDZ proteins showed that they are responsive to environmental stimuli and involved in numerous growth and developmental processes. The qRT-PCR analysis of 11 CsHDZ genes showed that they are expressed in all the tested tissues of Cucumis sativus. The differential expression pattern of CsHDZ genes unfolded their possible involvement in responding to various abiotic stresses and powdery mildew stress. It has been found that the CsHDZ22 localized in the nucleus which possibly participates in the regulatory mechanisms of various biological and cellular processes. In the light of above-mentioned outcomes, it has been deducted that CsHDZ genes in the Cucumis sativus genome play an important role in mediating the resistance to various abiotic stresses and powdery mildew stress as well as provide significant clues for functional studies.
Collapse
Affiliation(s)
- Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhen Cao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Li Yuhong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|