1
|
Efimov VМ, Rechkin DV, Goncharov NP. Multivariate analysis of long-term climate data in connection with yield, earliness and the problem of global warming. Vavilovskii Zhurnal Genet Selektsii 2024; 28:155-165. [PMID: 38680183 PMCID: PMC11043512 DOI: 10.18699/vjgb-24-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 05/01/2024] Open
Abstract
Climate change is the key challenge to agriculture in the XXI century. Future agricultural techniques in the Russian Federation should involve the optimization of land utilization. This optimization should apply algorithms for smart farming and take into consideration possible climate variations. Due to timely risk assessment, this approach would increase profitability and production sustainability of agricultural products without extra expenditures. Also, we should ground farming optimization not on available empirical data encompassing limited time intervals (month, year) or human personal evaluations but on the integral analysis of long-term information bodies using artificial intelligence. This article presents the results of a multivariate analysis of meteorological extremes which caused crop failures in Eastern and Western Europe in last 2600 years according to chronicle data and paleoreconstructions as well as reconstructions of heliophysical data for the last 9000 years. This information leads us to the conclusion that the current global warming will last for some time. However, subsequent climate changes may go in any direction. And cooling is more likely than warming; thus, we should be prepared to any scenario. Plant breeding can play a key role in solving food security problems connected with climate changes. Possible measures to adapt plant industry to the ongoing and expected climate changes are discussed. It is concluded that future breeding should be based on the use of highly adapted crops that have already been produced in pre-breeding programs, ready to meet future challenges caused by potential climate change.
Collapse
Affiliation(s)
- V М Efimov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Rechkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Leonova IN, Ageeva EV. Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (<i>Triticum aestivum</i> L.). Vavilovskii Zhurnal Genet Selektsii 2022; 26:675-683. [DOI: 10.18699/vjgb-22-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- I. N. Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. V. Ageeva
- Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
3
|
Chernook AG, Bazhenov MS, Kroupin PY, Ermolaev AS, Kroupina AY, Vukovic M, Avdeev SM, Karlov GI, Divashuk MG. Compensatory Effect of the ScGrf3-2R Gene in Semi-Dwarf Spring Triticale (x Triticosecale Wittmack). PLANTS (BASEL, SWITZERLAND) 2022; 11:3032. [PMID: 36432759 PMCID: PMC9695017 DOI: 10.3390/plants11223032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The dwarfness in many triticale cultivars is provided by the dominant Ddw1 (Dominant dwarf 1) allele found in rye. However, along with conferring semi-dwarf phenotype to improve resistance to lodging, this gene also reduces grain size and weight and delays heading and flowering. Grf (Growth-regulating factors) genes are plant-specific transcription factors that regulate plant growth, including stem growth, in terms of length and thickness, and leaf and fruit size. In this work, we partially sequenced the rye gene ScGrf3 on chromosome 2R homologous to the wheat Grf3 gene, and found multiple polymorphisms in intron 3 and exon 4 complying with two alternative alleles (haplotypes ScGrf3-2Ra and ScGrf3-2Rb). For the identification of these, we developed a codominant PCR marker. Using a new marker, we studied the effect of ScGrf3-2R alleles in combination with the Ddw1 dwarf gene on economically valuable traits in F4 and F5 recombinant lines of spring triticale from the hybrid combination Valentin 90 x Dublet, grown in the Non-Chernozem zone for 2 years. Allele ScGrf3-2Ra was associated with greater thousand-grain weight, higher spike productivity, and earlier heading and flowering, which makes ScGrf3-2R a perspective compensator for negative effects of Ddw1 on these traits and increases prospects for its involvement in breeding semi-dwarf cultivars of triticale.
Collapse
Affiliation(s)
| | - Mikhail S. Bazhenov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | | | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey M. Avdeev
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, 127434 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
4
|
Goncharov NP, Kosolapov VM. Plant breeding is the food security basis in the Russian Federation. Vavilovskii Zhurnal Genet Selektsii 2022; 25:361-366. [PMID: 35088006 PMCID: PMC8765775 DOI: 10.18699/vj21.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This issue of the Vavilov Journal of Genetics and Breeding is composed of reports of top Russian breeders delivered at the scientific session of the RAS Department of Agricultural Sciences “Scientific support of the efficient development of crop breeding and seed production in the Russian Federation” held in Moscow on December 7, 2020.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Kosolapov
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russia
| |
Collapse
|
5
|
Goncharov NP. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genet Selektsii 2022; 25:448-459. [PMID: 35088017 PMCID: PMC8765777 DOI: 10.18699/vj21.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture in the Russian Federation is fundamental to the country’s economic performance, living
standards, the wellbeing of people and state safety. Considerations relating to food security, prospects of and
challenges before plant breeding in the Siberian Federal District (SFD), the largest agricultural area of the Russian
Federation, are provided in the article. The agricultural area used in the SFD is about 50 million hectares and accounts for 13 % of the country’s gross grain production. The need for the introduction of modern molecular biological methods, bioengineering and IT technology is demonstrated and discussed. As Russia as a whole, Siberia
is largely engaged in unpromising extensive farming practices, which rely on natural soil fertility, and this factor
should be taken into account. Another issue is noncompliance with intensive farming technologies used for cultivating new-generation commercial cultivars. Although capital investments in plant breeding are the most cost
effective investments in crop production, breeders’ efforts remain underfunded. The article explains the need for
fundamental reform in this economic sector: the recognition of plant breeding as being a fundamental science;
a fair increase in its funding; the development of a breeding strategy, nationally and regionally; the further expansion of the network of the Breeding Centers; the re-establishment and improvement of the universities’ departments specialized in plant breeding and seed production; having more state-funded places in the universities for
training plant breeders to be able to maintain and cement the country’s advanced position in plant breeding and
to develop new globally competitive next-generation cultivars of main crops. Should these issues be ignored, all
the problems that have accumulated to date will lead to risks of long-term instability in this economic sector. The
need for the careful preservation of continuity in plant breeders and plants being bred is stated. The regulatory
functions of the state and agricultural science in plant breeding, plant industry and seed production are considered.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Divashuk M, Chernook A, Kroupina A, Vukovic M, Karlov G, Ermolaev A, Shirnin S, Avdeev S, Igonin V, Pylnev V, Kroupin P. TaGRF3-2A Improves Some Agronomically Valuable Traits in Semi-Dwarf Spring Triticale. PLANTS (BASEL, SWITZERLAND) 2021; 10:2012. [PMID: 34685820 PMCID: PMC8537337 DOI: 10.3390/plants10102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The breeding improvement of triticale is tightly associated with the introgression of dwarfing genes, in particular, gibberellin (GA)-insensitive Ddw1 from rye. Despite the increase in harvest index and resistance to lodging, this gene adversely affects grain weight and size. Growth regulation factor (GRF) genes are plant-specific transcription factors that play an important role in plant growth, including GA-induced stem elongation. This study presents the results of a two-year field experiment to assess the effect of alleles of the TaGRF3-2A gene in interaction with DDW1 on economically valuable traits of spring triticale plants grown in the Non-Chernozem zone. Our results show that, depending on the allelic state, the TaGRF3-2A gene in semi-dwarf spring triticale plants influences the thousand grain weight and the grain weight of the main spike in spring triticale, which makes it possible to use it to compensate for the negative effects of the dwarfing allele Ddw1. The identified allelic variants of the TaGRF3-2A gene can be included in marker-assisted breeding for triticale to improve traits.
Collapse
Affiliation(s)
- Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Anastasiya Chernook
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksandra Kroupina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksey Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Shirnin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Avdeev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Igonin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Pylnev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Pavel Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| |
Collapse
|
7
|
Konovalov AA, Karpova EV, Shundrina IK, Razmakhnin EP, Eltsov IV, Goncharov NP. Effect of Allelic Variants of Aromatic Alcohol Dehydrogenase CADim on Micromorphological and Chemical Tissue Indices in the Spring Bread Wheat Triticum aestivum L. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|