1
|
Demonte LD, Cendoya E, Nichea MJ, Romero Donato CJ, Ramirez ML, Repetti MR. Occurrence of modified mycotoxins in Latin America: an up-to-date review. Mycotoxin Res 2024; 40:467-481. [PMID: 39096468 DOI: 10.1007/s12550-024-00548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
The Latin America region has a considerable extent of varied climate conditions: from tropical, subtropical, and warm temperate to temperate. Among the surface territory, different agricultural products are produced, making them an important food source for human consumption. Fungal species commonly colonize those important agricultural products and often contaminate them with mycotoxins that have a major impact on health, welfare, and productivity. Nowadays, special attention is paid to modified mycotoxins, which are those that cannot be detected by conventional analytical methods. However, little data about their natural occurrence in food and feed is available, especially in Latin American countries, where, among all the countries in this region, only a few of them are working on this subject. Thus, the present review summarizes the published information available in order to determine the possible human exposure risk to these toxins.
Collapse
Affiliation(s)
- Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eugenia Cendoya
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - María J Nichea
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cindy J Romero Donato
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María L Ramirez
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| |
Collapse
|
2
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
3
|
Lavrinenko IA, Donskikh AO, Minakov DA, Sirota AA. Analysis and classification of peanuts with fungal diseases based on real-time spectral processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:990-1000. [PMID: 35044871 DOI: 10.1080/19440049.2021.2017001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic Aspergillus flavus (Aspergillus parasiticus). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.
Collapse
Affiliation(s)
- Igor A Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, Russia
| | - Artem O Donskikh
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Dmitriy A Minakov
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Alexander A Sirota
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| |
Collapse
|
4
|
Maggira M, Sakaridis I, Ioannidou M, Samouris G. Comparative Evaluation of Three Commercial Elisa Kits Used for the Detection of Aflatoxins B1, B2, G1, and G2 in Feedstuffs and Comparison with an HPLC Method. Vet Sci 2022; 9:vetsci9030104. [PMID: 35324831 PMCID: PMC8952571 DOI: 10.3390/vetsci9030104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Various analytical techniques for detecting mycotoxins have been developed in order to control their concentration in food and feed. Conventional analytical approaches for mycotoxin identification include thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and gas chromatography (GC). Rapid methods for mycotoxin analysis are also becoming increasingly relevant. One of the most common rapid methods for determining these compounds is the enzyme-linked immunosorbent assay (ELISA). The current study aimed to compare three available ELISA kits for the detection and quantification of aflatoxins B1, B2, G1, and G2 in spiked feed samples at known quantities. All three ELISA kits were validated and showed good performance with high recovery rates and LOD and LOQ values lower than the MRL. The developed HPLC-FL method was validated for all the compounds determining the accuracy, precision, linearity, decision limit, and detection capability with fairly good results. Unknown feed samples (corn, silage, pellet, barley, wheat, soya, and sunflower) were also tested using the best ELISA kit and HPLC, and the results were compared. Both ELISA and HPLC were proven to be suitable methods for mycotoxin analysis. The analytical technique should be determined primarily by the availability and number of samples.
Collapse
|
5
|
Wang Z, Luo P, Zheng B. A Rapid and Sensitive Fluorescent Microsphere-Based Lateral Flow Immunoassay for Determination of Aflatoxin B1 in Distillers' Grains. Foods 2021; 10:foods10092109. [PMID: 34574219 PMCID: PMC8468960 DOI: 10.3390/foods10092109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a toxic compound naturally produced by the genera Aspergillus. Distillers' grains can be used as animal feed since they have high content of crude protein and other nutrients. However, they are easily contaminated by mycotoxins, and currently there are no rapid detection methods for AFB1 in distillers' grains. In this study, a lateral flow immunoassay (LFIA) based on red fluorescent microsphere (FM), is developed for quantitative detection of AFB1 in distillers' grains. The whole test can be completed within 15 min, with the cut-off value being 25.0 μg/kg, and the quantitative limit of detection (qLOD) being 3.4 μg/kg. This method represents satisfactory recoveries of 95.2-113.0%, and the coefficients of variation (CVs) are less than 7.0%. Furthermore, this technique is successfully used to analyze AFB1 in real samples, and the results indicates good consistency with that of high-performance liquid chromatography (HPLC). The correlation coefficient is found to be greater than 0.99. The proposed test strip facilitates on-site, cost-effective, and sensitive monitoring of AFB1 in distillers' grains.
Collapse
Affiliation(s)
- Zifei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Pengjie Luo
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83705076
| |
Collapse
|
6
|
Maggira M, Ioannidou M, Sakaridis I, Samouris G. Determination of Aflatoxin M1 in Raw Milk Using an HPLC-FL Method in Comparison with Commercial ELISA Kits-Application in Raw Milk Samples from Various Regions of Greece. Vet Sci 2021; 8:46. [PMID: 33802039 PMCID: PMC7998348 DOI: 10.3390/vetsci8030046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
The highly toxic Aflatoxin M1 (AFM1) is most often detected in milk using an Enzyme-Linked-Immunosorbent Assay (ELISA) for screening purposes, while High-Performance Liquid Chromatography with Fluorescence Detector (HPLC-FL) is the reference method used for confirmation. The aim of the present study was the comparison between three commercially available ELISA kits and a newly developed HPLC-FL method for the determination of the AFM1 in milk samples. The developed HPLC-FL method was validated for the AFM1 and Aflatoxin M2 (AFM2), determining the accuracy, precision, linearity, decision limit, and detection capability with fairly good results. All three ELISA kits were also validated and showed equally good performance with high recovery rates. Moreover, the Limit Of Detection (LOD) and Limit Of Quantification (LOQ) values were found to be significantly lower than the Maximum Residue Limit (MRL) (50 ng kg-1). After the evaluation of all three commercial kits, the ELISA kit with the optimum performance along with the HPLC method was used for the determination of AFM1 in raw cow's, goat's, and sheep's milk samples (396) obtained from producers in different regions of Greece. The evaluation of both methods showed that this ELISA kit could be considered as a faster and equally reliable alternative method to HPLC in routine analysis for the determination of AFM1 in milk.
Collapse
Affiliation(s)
| | | | | | - Georgios Samouris
- Department of Hygiene and Technology of Food of Animal Origin, Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, 57001 Thessaloniki, Greece; (M.M.); (M.I.); (I.S.)
| |
Collapse
|
7
|
Lattanzio VMT, von Holst C, Lippolis V, De Girolamo A, Logrieco AF, Mol HGJ, Pascale M. Evaluation of Mycotoxin Screening Tests in a Verification Study Involving First Time Users. Toxins (Basel) 2019; 11:E129. [PMID: 30791649 PMCID: PMC6410077 DOI: 10.3390/toxins11020129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 02/05/2023] Open
Abstract
(AFB₁) in maize and wheat using LFD and LC-HRMS, respectively. The results of analyses were used to calculate intermediate precision (RSDip, covering the inter-analyst variability in preparing the analytical samples and the precision under repeatability conditions) cut-off values and false suspect rates. RSDip ranged from 6.5% to 30% for DON, and from 16% to 33% for AFB₁. The highest obtained variances were associated with the AFB₁ analyses due to working with much lower mass fractions. The rate of false suspect results were lower than 0.1% for all tested methods. All methods showed a fit-for-purpose method performance profile, which allowed a clear distinction of samples containing the analytes at the screening target concentration (STC) from negative control samples. Moreover, the first time users obtained method performances similar to those obtained for validation studies previously performed on the screening methods included in the training course.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola, 122/O, 70126 Bari, Italy.
| | - Christoph von Holst
- European Commission, Joint Research Centre (JRC), 2440 Geel, 111 Retieseweg, Belgium.
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola, 122/O, 70126 Bari, Italy.
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola, 122/O, 70126 Bari, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola, 122/O, 70126 Bari, Italy.
| | - Hans G J Mol
- RIKILT-Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Michelangelo Pascale
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola, 122/O, 70126 Bari, Italy.
| |
Collapse
|
8
|
Wang J, Mukhtar H, Ma L, Pang Q, Wang X. VHH Antibodies: Reagents for Mycotoxin Detection in Food Products. SENSORS 2018; 18:s18020485. [PMID: 29415506 PMCID: PMC5855929 DOI: 10.3390/s18020485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023]
Abstract
Mycotoxins are the toxic secondary metabolites produced by fungi and they are a worldwide public health concern. A VHH antibody (or nanobody) is the smallest antigen binding entity and is produced by heavy chain only antibodies. Compared with conventional antibodies, VHH antibodies overcome many pitfalls typically encountered in clinical therapeutics and immunodiagnostics. Likewise, VHH antibodies are particularly useful for monitoring mycotoxins in food and feedstuffs, as they are easily genetic engineered and have superior stability. In this review, we summarize the efforts to produce anti-mycotoxins VHH antibodies and associated assays, presenting VHH as a potential tool in mycotoxin analysis.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qian Pang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Zarei AR, Barghak F. Application of the localized surface plasmon resonance of gold nanoparticles for the determination of 1,1-dimethylhydrazine in water: Toward green analytical chemistry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Arduini F, Neagu D, Pagliarini V, Scognamiglio V, Leonardis M, Gatto E, Amine A, Palleschi G, Moscone D. Rapid and label-free detection of ochratoxin A and aflatoxin B1 using an optical portable instrument. Talanta 2016; 150:440-8. [DOI: 10.1016/j.talanta.2015.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022]
|
11
|
Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Anal Bioanal Chem 2015; 407:5333-41. [DOI: 10.1007/s00216-015-8693-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
12
|
Disposable and reliable electrochemical magnetoimmunosensor for Fumonisins simplified determination in maize-based foodstuffs. Biosens Bioelectron 2015; 64:633-8. [DOI: 10.1016/j.bios.2014.09.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022]
|
13
|
Christoforidou S, Malissiova E, Gortzi O, Hadjichristodoulou C. Comparative evaluation of ELISA kits’ reliability for the aflatoxin M1 determination in goat milk. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2374-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Proposal of a comprehensive definition of modified and other forms of mycotoxins including "masked" mycotoxins. Mycotoxin Res 2014; 30:197-205. [PMID: 24962446 PMCID: PMC4202116 DOI: 10.1007/s12550-014-0203-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/23/2023]
Abstract
As the term “masked mycotoxins” encompasses only conjugated mycotoxins generated by plants and no other possible forms of mycotoxins and their modifications, we hereby propose for all these forms a systematic definition consisting of four hierarchic levels. The highest level differentiates the free and unmodified forms of mycotoxins from those being matrix-associated and from those being modified in their chemical structure. The following lower levels further differentiate, in particular, “modified mycotoxins” into “biologically modified” and “chemically modified” with all variations of metabolites of the former and dividing the latter into “thermally formed” and “non-thermally formed” ones. To harmonize future scientific wording and subsequent legislation, we suggest that the term “modified mycotoxins” should be used in the future and the term “masked mycotoxins” to be kept for the fraction of biologically modified mycotoxins that were conjugated by plants.
Collapse
|
15
|
Burmistrova NA, Rusanova TY, Yurasov NA, De Saeger S, Goryacheva IY. Simultaneous determination of several mycotoxins by rapid immunofiltration assay. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814060045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li W, Powers S, Dai S. Using commercial immunoassay kits for mycotoxins: ‘joys and sorrows’? WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rapid test methods are widely used for measuring mycotoxins in a variety of matrices. This review presents an overview of the current commercially available immunoassay rapid test formats. Enzyme linked immune-sorbent assay (ELISA), lateral flow tests, flow through immunoassay, fluorescent polarisation immunoassay, and immunoaffinity columns coupled with fluorometric assay are common formats in the current market. The two existing evaluation programs for commercial testing kits by United State Department of Agricultural Grain Inspection, Packers & Stockyards Administration (USDA-GIPSA) and AOAC Research Institute are introduced. The strengths and weaknesses of these test kits are discussed with regard to the application scope, variance, specificity and cross reactivity, accuracy and precision, and measurement range. Generally speaking, the current commercially available testing kits meet research and industrial needs as ‘fit-for-purpose’. Furthermore, quality assurance concerns and future perspectives are elaborated for broader application of commercial test kits in research, industry and regulatory applications. It is expected that new commercial kits based on advanced technologies such as electrochemical affinity biosensors, molecularly imprinted polymers, surface plasmon resonance, fluorescence resonance energy transfer, aptamer-based biosensors and dynamic light scattering might be available to users in the future. Meanwhile, harmonisation of testing kit evaluation, incorporation of more quality assurance into the testing kit utilisation scheme, and a larger variety of kits available at lower cost will expand the usage of testing kits for food safety testing worldwide.
Collapse
Affiliation(s)
- Wei Li
- Office of the Texas State Chemist, Texas A&M University, 445 Agronomy Road, College Station, TX 77843, USA
| | - S. Powers
- VICAM, 34 Maple Street, Milford, MA 02157, USA
| | - S.Y. Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| |
Collapse
|
17
|
Zachariasova M, Cuhra P, Hajslova J. Cross-reactivity of rapid immunochemical methods for mycotoxins detection towards metabolites and masked mycotoxins: the current state of knowledge. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cross-reactivity of antibodies employed within immunochemistry-based analytical methods may lead to overestimation of the results. Under certain conditions, specifically when controlling mycotoxin maximum limits serious problems can be encountered. Not only the structurally related mycotoxins, such as their masked (conjugated) forms, but also the unidentified matrix components are responsible for concentration overestimation of respective target analytes. The cross-reactivity phenomenon may also pose a risk of miss-interpretation of the proficiency tests results, when the assigned value becomes influenced by over-estimated results reported by users of immunochemical tests. In this paper, the current state of the knowledge on trueness problems associated with the rapid screening immunochemical methods have been reviewed. Special attention is focused on discussion of cross-reactivity in the ELISA tests, because this rapid test dominates the routine screening practice. However, the cross-reactions reported in lateral flow test strips, fluorescence polarisation immunoassay, or immunosensors have also been addressed.
Collapse
Affiliation(s)
- M. Zachariasova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - P. Cuhra
- Czech Agriculture and Food Inspection Authority, Za Opravnou 300/6, 150 06 Prague 5, Czech Republic
| | - J. Hajslova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
18
|
Modified use of a commercial ELISA kit for deoxynivalenol determination in rice and corn silage. Mycotoxin Res 2012; 29:79-88. [DOI: 10.1007/s12550-012-0155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
19
|
Mercader JV, Esteve-Turrillas FA, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Antibody generation and immunoassay development in diverse formats for pyrimethanil specific and sensitive analysis. Analyst 2012; 137:5672-9. [PMID: 23085609 DOI: 10.1039/c2an35801h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunochemical techniques are complementary tools to modern analytical requirements. These methods rely on the production of immunoreagents with adequate binding properties. In the present study, a rationally designed and functionalized derivative of pyrimethanil--a modern anilinopyrimidine fungicide--was synthesized in order to generate for the first time high-affinity and selective antibodies to this xenobiotic. A single coupling procedure--based on hapten activation using N,N'-disuccinimidyl carbonate and purification of the active ester--was followed to prepare both immunizing and assay conjugates. Polyclonal antibodies were produced and characterized by enzyme-linked immunosorbent assay (ELISA) in four alternative formats: one indirect and three direct competitive procedures. The selected immunoassay displayed a limit of detection of 0.024 μg L(-1), far lower than the official maximum residue limits and close to the sensitivity of regular instrumental assays. This ELISA was shown to be robust to buffer changes and tolerant to the presence of little amounts of methanol, ethanol and acetonitrile. Finally, the developed assay was applied to the analysis of pyrimethanil in carrot juice samples, and a limit of quantification of 0.040 mg L(-1) was determined.
Collapse
Affiliation(s)
- Josep V Mercader
- Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas, IATA-CSIC, Agustí Escardino 7, 46980 Paterna, València, Spain
| | | | | | | | | |
Collapse
|
20
|
Goryacheva I, De Saeger S. Immunochemical detection of masked mycotoxins: A short review. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxin derivatives that escape conventional analytical detection of parent (free) forms because their structure has been changed are designated masked mycotoxins. Masking phenomena are due to a defensive response of the host plant or can occur during food processing. Failure to detect masked mycotoxins will lead to a significant underestimation of the mycotoxin content of a particular sample. To date, mainly chromatographic methods were developed for masked mycotoxin determination and quantification. However, for fast screening, it is important to develop on-site methods for detection of masked and parent (free) forms. Although immunochemical methods could provide a simple and economical alternative to chromatography, their use for masked forms is only at the start of development. The key-point for antibody-based methods for masked mycotoxin determination is cross-reactivity of the specific antibody towards masked mycotoxins. If the antibody does not show meaningful affinity for masked forms, they will be latent, and the total content of this mycotoxin will be underestimated. If the antibody shows affinity for masked forms, the sum of free and masked forms will be determined. Currently, neither antibodies nor immuno-based methods were specifically developed for masked mycotoxins, but some enzyme-linked immunosorbent assay test-kits and immunoaffinity columns for mycotoxins were evaluated for their detection. This paper describes possible applications of antibody-based techniques for masked mycotoxin detection on the basis of recent literature.
Collapse
Affiliation(s)
- I.Y. Goryacheva
- Saratov State University, Chemistry Institute, Astrakhanskaya 83, 410012 Saratov, Russia
| | - S. De Saeger
- Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Mercader JV, Parra J, Esteve-Turrillas FA, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Development of monoclonal antibody-based competitive immunoassays for the detection of picoxystrobin in cereal and oilseed flours. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Li Y, Wang Y, Guo Y. Preparation of synthetic antigen and monoclonal antibody for indirect competitive ELISA of citrinin. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2011.606562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
23
|
Meulenberg EP. Immunochemical methods for ochratoxin A detection: a review. Toxins (Basel) 2012; 4:244-66. [PMID: 22606375 PMCID: PMC3347002 DOI: 10.3390/toxins4040244] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022] Open
Abstract
The safety of food and feed depends to a great deal on quality control. Numerous compounds and organisms may contaminate food and feed commodities and thus pose a health risk for consumers. The compound of interest in this review is ochratoxin A (OTA), a secondary metabolite of the fungi Aspergillus and Penicillium. Due to its adverse health effects, detection and quantification are of utmost importance. Quality control of food and feed requires extraction and analysis, including TLC, HPLC, MS, and immunochemical methods. Each of these methods has its advantages and disadvantages. However, with regard to costs and rapidity, immunochemical methods have gained much interest in the last decade. In this review an introduction to immunochemistry and assay design will be given to elucidate the principles. Further, the application of the various formats to the detection and quantification of ochratoxin will be described, including the use of commercially available kits.
Collapse
|
24
|
|
25
|
LI YONGNING, WANG YUANYUAN, GUO YANGHAO. AN INDIRECT COMPETITIVE ELISA FOR DETERMINATION OF CITRININ. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00326.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Dorokhin D, Haasnoot W, Franssen MCR, Zuilhof H, Nielen MWF. Imaging surface plasmon resonance for multiplex microassay sensing of mycotoxins. Anal Bioanal Chem 2011; 400:3005-11. [PMID: 21484244 PMCID: PMC3102835 DOI: 10.1007/s00216-011-4973-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 10/27/2022]
Abstract
A prototype imaging surface plasmon resonance-based multiplex microimmunoassay for mycotoxins is described. A microarray of mycotoxin-protein conjugates was fabricated using a continuous flow microspotter device. A competitive inhibition immunoassay format was developed for the simultaneous detection of deoxynivalenol (DON) and zearalenone (ZEN), using a single sensor chip. Initial in-house validation showed limits of detection of 21 and 17 ng/mL for DON and 16 and 10 ng/mL for ZEN in extracts, which corresponds to 84 and 68 μg/kg for DON and 64 and 40 μg/kg for ZEN in maize and wheat samples, respectively. Finally, the results were critically compared with data obtained from liquid chromatography-mass spectrometry confirmatory analysis method and found to be in good agreement. The described multiplex immunoassay for the rapid screening of several mycotoxins meets European Union regulatory limits and represents a robust platform for mycotoxin analysis in food and feed samples.
Collapse
Affiliation(s)
- Denis Dorokhin
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Willem Haasnoot
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Michel W. F. Nielen
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
27
|
Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Anal Bioanal Chem 2011; 399:2275-84. [DOI: 10.1007/s00216-010-4599-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/06/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
|
28
|
Tangni EK, Motte JC, Callebaut A, Pussemier L. Cross-reactivity of antibodies in some commercial deoxynivalenol test kits against some fusariotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12625-12633. [PMID: 21087038 DOI: 10.1021/jf103025e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cross-reactivity of antibodies in AGRAQUANT, DON EIA, VERATOX, ROSA LF-DONQ, and MYCONTROLDON designed for deoxynivalenol (DON) determination in food and feedstuffs was evaluated against nivalenol, 3-acetylDON, 15-acetylDON, de-epoxy metabolite 1 of DON, DON-3β-glucoside, T2-toxin, HT2-toxin, fusarenone X, diacetoxyscirpenol, verrucarol, and zearalenone. Cross-reactivity measurements were run in water using the 50% reduction of absorbance of the blank for ELISA kits or through direct DON determination upon using the standards of mycotoxins via ROSA LF-DONQ or MYCONTROLDON. For the tested toxin concentrations, all DON kits have low cross-reactivity toward diacetoxyscirpenol, T2-toxin, HT2-toxin, verrucarol, and zearalenone and moderate cross-reactivity toward 15-AcetylDON and fusarenone X. AGRAQUANT, DON EIA, and VERATOX kits showed high cross-reactivity in various ranking orders against DON-3-Glc, DOM-1, and 3AcDON. DON EIA showed also high cross-reactivity against nivalenol and fusarenone X. These mycotoxins could coexist in food or feedstuffs, and analytical results can be wrongly interpreted. Cross-reactivity does not allow checking the compliance with the legal norms, but it does allow an overall risk assessment for the consumers. Updating regularly the cross-reactivity evaluation of the produced batches is recommended for 3-acetylDON, nivalenol, DON-3-Glc, de-epoxy metabolite 1, and fusarenone X.
Collapse
Affiliation(s)
- Emmanuel K Tangni
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Operational Directorate of Chemical Safety of the Food Chain, Unit of Toxins and Natural Components, Leuvensesteenweg 17, 3080 Tervuren, Belgium.
| | | | | | | |
Collapse
|
29
|
Deoxynivalenol loads in matched pair wheat samples in Belgium: comparison of ELISA VERATOX kit against liquid chromatography. Mycotoxin Res 2010; 27:105-13. [DOI: 10.1007/s12550-010-0081-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
30
|
Ngom B, Guo Y, Wang X, Bi D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem 2010; 397:1113-35. [PMID: 20422164 DOI: 10.1007/s00216-010-3661-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/10/2023]
Abstract
Recent progress in the laboratory has been a result of improvements in rapid analytical techniques. An update of the applications of lateral flow tests (also called immunochromatographic assay or test strip) is presented in this review manuscript. We emphasized the description of this technology in the detection of a variety of biological agents and chemical contaminants (e.g. veterinary drugs, toxins and pesticides). It includes outstanding data, such as sample treatment, sensitivity, specificity, accuracy and reproducibility. Lateral flow tests provide advantages in simplicity and rapidity when compared to the conventional detection methods.
Collapse
Affiliation(s)
- Babacar Ngom
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
31
|
Espejo F, Vázquez C, Patiño B, Armada S. Ochratoxin A production in aniseed-based media by selected fungal strains and in anise fruits (Pimpinella anisum L.). Mycotoxin Res 2010; 26:75-84. [DOI: 10.1007/s12550-010-0042-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 11/24/2022]
Affiliation(s)
- Francisco Espejo
- Quality Department, Navisa Industrial Vinícola Española SA, Ctra. de Montalbán s/n, 14550, Montilla, Córdoba, Spain,
| | | | | | | |
Collapse
|