1
|
Boakye RG, Stanley DA, White B. Honey contamination from plant protection products approved for cocoa (Theobroma cacao) cultivation: A systematic review of existing research and methods. PLoS One 2023; 18:e0280175. [PMID: 37878562 PMCID: PMC10599517 DOI: 10.1371/journal.pone.0280175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/06/2023] [Indexed: 10/27/2023] Open
Abstract
The main component of chocolate, cocoa (Theobroma cacao), is a significant commercial agricultural plant that directly sustains the livelihoods of an estimated forty to fifty million people. The economies of many cocoa producing nations, particularly those in the developing world, are supported by cocoa export revenue. To ensure satisfactory yields, however, the plant is usually intensely treated with pesticides because it is vulnerable to disease and pest attacks. Even though pesticides help protect the cocoa plant, unintended environmental contamination is also likely. Honey, produced from nectar obtained by honeybees from flowers while foraging, can serve as a good indicator for the level of pesticide residues and environmental pesticide build-up in landscapes. Here, we use a systematic literature review to quantify the extent of research on residues of pesticides used in cocoa cultivation in honey. In 81% of the 104 studies examined for this analysis, 169 distinct compounds were detected. Imidacloprid was the most frequently detected pesticide, making neonicotinoids the most frequently found class of pesticides overall. However, in cocoa producing countries, organophosphates, organochlorines, and pyrethroids were the most frequently detected pesticides. Interestingly, only 19% of studies were carried out in cocoa producing countries. We recommend prioritizing more research in the countries that produce cocoa to help to understand the potential impact of pesticide residues linked with cocoa cultivation in honey and the environment more generally to inform better pesticide usage, human health, and environmental policies.
Collapse
Affiliation(s)
- Richard G. Boakye
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Dara A. Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Zhang Q, Ma C, Duan Y, Wu X, Lv D, Luo J. Determination and dietary intake risk assessment of 35 pesticide residues in cowpea (Vigna unguiculata [L.] Walp) from Hainan province, China. Sci Rep 2022; 12:5523. [PMID: 35365691 PMCID: PMC8975881 DOI: 10.1038/s41598-022-09461-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
The presence of pesticide residues in cowpea raises serious health concerns. In this study, a novel, sensitive, high-performance method was developed to simultaneously analyze the residues of 35 pesticides in cowpea samples from growing areas in the Hainan province of China, from November 2018 to June 2021. The method employs modified QuEChERS sample pretreatment coupled with gas chromatography-tandem mass spectrometry. The limits of quantification of the 35 pesticides in the cowpea matrix ranged from 1.0 to 8.0 μg/kg. Twenty-seven of the 35 pesticides were detected, twelve of which are banned for use on legumes in China. Residues for ten pesticides in 17.1% of the samples exceeded their MRLs, with the highest exceedance of 380% observed in difenoconazole. Moreover, 80.8% of the samples contained one or more pesticide residues, with the most frequently detected pesticide being chlorfenapyr with a detection rate of 46.3%. In addition, the pesticide triazophos was detected through different years and regions. Notably, the chronic dietary exposure risk (%ADI) of the detected pesticides, evaluated from the national estimated acceptable daily intake, was lower than 100% in Chinese people of different age groups.
Collapse
Affiliation(s)
- Qun Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China. .,Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, China.
| | - Chen Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, China
| | - Yun Duan
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, China
| | - Xiaopeng Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruit and Vegetable Products, Haikou, 571101, Hainan, China
| | - Daizhu Lv
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruit and Vegetable Products, Haikou, 571101, Hainan, China
| | - Jinhui Luo
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, China
| |
Collapse
|
3
|
Marzi Khosrowshahi E, Nemati M, Farajzadeh MA, Afshar Mogaddam MR. In situ adsorbent formation based dispersive micro-solid phase extraction using a deep eutectic solvent as an elution solvent for the extraction of some pesticides from honey samples prior to GC-MS analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4724-4731. [PMID: 34554168 DOI: 10.1039/d1ay01182k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a simple, inexpensive, green, and fast dispersive micro-solid phase extraction method has been developed for the extraction of several pesticides from honey samples. In this approach, a solution of curcumin was prepared in ethanol and it was dispersed into a sample solution with the aid of a syringe. Curcumin was precipitated in the sample solution as tiny particles and the analytes were adsorbed onto them. After centrifugation the adsorbed analytes were eluted with tetrabutylammonium chloride:dichloroacetic acid deep eutectic solvent. The dissolved analytes in the deep eutectic solvent were analyzed by gas chromatography-mass spectrometry. Parameters affecting the extraction efficiency of the method including sorbent amount, dispersive solvent type and volume, elution solvent type and volume, salting out effect, and sonication time were investigated. Extraction recovery of the method was obtained in the range of 70-83%. Also wide calibration ranges and low detection limits (0.22-0.81 ng g-1) were obtained. Relative standard deviation values for intra- and inter-day precisions were ≤10.2% for all analytes at a concentration of 5 ng g-1 of each (n = 6). Finally, ten honey samples were analyzed and data showed that all of the studied samples were free of the analytes.
Collapse
Affiliation(s)
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|