Wei D, Zhang C, Pan A, Guo M, Lou C, Zhang J, Wang X, Wu H. Facile synthesis and evaluation of three magnetic 1,3,5-triformylphloroglucinol based covalent organic polymers as adsorbents for high efficient extraction of phthalate esters from plastic packaged foods.
Food Chem X 2022;
14:100346. [PMID:
35663596 PMCID:
PMC9160344 DOI:
10.1016/j.fochx.2022.100346]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022] Open
Abstract
A facile synthetic route for synthesis of three magnetic Tp-based COPs adsorbents was provided.
Magnetic COP2 showed best extraction performance for PAEs.
The potential adsorption mechanism was systematically investigated.
This method was suitable for high efficient extraction of hydrophobic PAEs from foods.
Three covalent organic polymers (COPs) were successfully fabricated by room-temperature solvent-free mechanochemical grinding method between 1,3,5-triformylphloroglucinol (TP) and p-phenyl enediamine (COP1), benzidine (COP2), 4, 4″-diamino-p-terphenyl (COP3), and followed by coprecipitation on the surface of Fe3O4 nanoparticles to form three corresponding magnetic Tp-series COPs. The fabricated magnetic COPs were evaluated and then applied for the extraction of phthalate esters from food samples before gas chromatography-tandem spectrometry analysis. Magnetic COP2 exhibited the highest extraction efficiency, which can be attributed to its larger pore size, and its strong hydrophobic and π-π interactions with phthalate esters. The method possessed good linearity (10–1000 μg·kg−1), high sensitivity (0.29–2.59 µg·kg−1 for LODs and 0.97–8.63 µg·kg−1 for LOQs), and satisfactory recoveries (70.2–108.1%) with relative standard deviations lower than 5.2%. This method has potentials for high efficient separation/preconcentration of hydrophobic phthalate esters from foods.
Collapse