1
|
Valyaeva AA, Tikhomirova MA, Feng J, Zharikova AA, Potashnikova DM, Musinova YR, Mironov AA, Vassetzky YS, Sheval EV. Compensatory reactions of B cells in response to chronic HIV-1 Tat exposure. J Cell Physiol 2025; 240:e31459. [PMID: 39373061 DOI: 10.1002/jcp.31459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Patients infected with human immunodeficiency virus-1 (HIV-1) have an increased incidence of B-cell lymphoma, even though HIV-1 does not infect B cells. The development of B-cell lymphomas appears to be related to the action of the HIV-1 transactivator protein (Tat), which is released from HIV-infected cells and penetrates uninfected B cells, affecting host cell gene expression. Upon chronic HIV-1 infection, Tat acts on the cells for a long time, probably allowing the cells to adapt to the presence of the viral protein. The aim of this work was to identify and study the mechanism of adaptation of cells to prolonged (chronic) exposure to HIV-1 Tat. We performed a comparative analysis of cells expressing Tat under the action of either an inducible promoter or a constitutive promoter, allowing us to model acute and chronic Tat effects, respectively. We found that the acute action of Tat leads to the suppression of cell proliferation, probably due to the downregulation of genes associated with replication and protein synthesis. In the case of chronic action of Tat, cell proliferation was restored and the expression of genes associated with the implementation of protective (antiviral) functions of the cell was increased. Analysis using proteasome inhibitors showed that in the case of chronic action, intense Tat proteolysis occurred, which could be the main mechanism of B-cell adaptation. Thus, B cells have a powerful mechanism to adapt to the entry of HIV-1 Tat, the efficiency of which may determine the frequency of lymphomagenesis in HIV-1-infected patients.
Collapse
Affiliation(s)
- Anna A Valyaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Tikhomirova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Junyi Feng
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Anastasia A Zharikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Mironov
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yegor S Vassetzky
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Akbay B, Germini D, Bissenbaev AK, Musinova YR, Sheval EV, Vassetzky Y, Dokudovskaya S. HIV-1 Tat Activates Akt/mTORC1 Pathway and AICDA Expression by Downregulating Its Transcriptional Inhibitors in B Cells. Int J Mol Sci 2021; 22:ijms22041588. [PMID: 33557396 PMCID: PMC7915967 DOI: 10.3390/ijms22041588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/26/2023] Open
Abstract
HIV-1 infects T cells, but the most frequent AIDS-related lymphomas are of B-cell origin. Molecular mechanisms of HIV-1-induced oncogenic transformation of B cells remain largely unknown. HIV-1 Tat protein may participate in this process by penetrating and regulating gene expression in B cells. Both immune and cancer cells can reprogram communications between extracellular signals and intracellular signaling pathways via the Akt/mTORC1 pathway, which plays a key role in the cellular response to various stimuli including viral infection. Here, we investigated the role of HIV-1 Tat on the modulation of the Akt/mTORC1 pathway in B cells. We found that HIV-1 Tat activated the Akt/mTORC1 signaling pathway; this leads to aberrant activation of activation-induced cytidine deaminase (AICDA) due to inhibition of the AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies.
Collapse
Affiliation(s)
- Burkitkan Akbay
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (B.A.); (D.G.); (Y.V.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Diego Germini
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (B.A.); (D.G.); (Y.V.)
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yana R. Musinova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119991 Moscow, Russia;
- Belozersky Institute of Physicochemical Biology, Moscow State University, 119899 Moscow, Russia;
| | - Evgeny V. Sheval
- Belozersky Institute of Physicochemical Biology, Moscow State University, 119899 Moscow, Russia;
| | - Yegor Vassetzky
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (B.A.); (D.G.); (Y.V.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (B.A.); (D.G.); (Y.V.)
- Correspondence:
| |
Collapse
|