1
|
Polikarpova P, Koptelova AO, Vutolkina AV, Akopyan AV. Combined Heterogeneous Catalyst Based on Titanium Oxide for Highly Efficient Oxidative Desulfurization of Model Fuels. ACS OMEGA 2022; 7:48349-48360. [PMID: 36591125 PMCID: PMC9798520 DOI: 10.1021/acsomega.2c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, new heterogeneous Mo-containing catalysts based on sulfonic titanium dioxide were developed for the oxidation of sulfur-containing model feed. The synergistic effect of molybdenum and sulfonic group modifiers allows for enhancing catalytic activity in dibenzothiophene oxidative transformation, and a strong interaction between support and active component for thus obtained catalysts provides increased stability for leaching. For the selected optimal conditions, the Mo/TiO2-SO3H catalyst exhibited 100% DBT conversion for 10 min (1 wt % catalyst, molar ratio of H2O2:DBT, 2:1; 80 °C). Complete oxidation of DBT in the presence of the synthesized catalyst is achieved when using a stoichiometric amount of oxidizing agent, which indicates its high selectivity. The enhanced stability for metal leaching was proved in recycling tests, where the catalyst was operated for seven oxidation cycles without regeneration with retainable activity in DBT-containing model feed oxidation with hydrogen peroxide under mild reaction conditions. In 30 min of the reaction (H2O2:S = 2:1 (mol), 0.5% catalyst, 5 mL of acetonitrile, 80 °C), it was possible to reduce the content of sulfur compounds in the diesel fraction by 88% (from 5600 to 600 ppm).
Collapse
|
2
|
Izadi R, Assarian D, Altaee A, Mahinroosta M. Investigation of methods for fuel desulfurization wastewater treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Zarifyanova MZ, Islamova GG, Khairullina ZZ, Kharlampidi KE. Thermal Stability of Petroleum Sulfones. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Polikarpova PD, Koptelova AO, Sinikova NA, Akopyan AV, Anisimov AV. Oxidation of Organic Sulfur Compounds in the Presence of Heteropoly Acids Immobilized on Mesoporous Silicates. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222070035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Adhami M, Movahedirad S, Sobati MA. Oxidative desulfurization of fuels using gaseous oxidants: a review. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2089037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohsen Adhami
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Salman Movahedirad
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Amin Sobati
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
6
|
Akopyan AV, Polikarpova PD, Anisimov AV, Lysenko SV, Maslova OV, Sen’ko OV, Efremenko EN. Oxidation of Dibenzothiophene with the Subsequent Bioconversion of Sulfone. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Akopyan AV, Polikarpova PD, Arzyaeva NV, Anisimov AV, Maslova OV, Senko OV, Efremenko EN. Model Fuel Oxidation in the Presence of Molybdenum-Containing Catalysts Based on SBA-15 with Hydrophobic Properties. ACS OMEGA 2021; 6:26932-26941. [PMID: 34693114 PMCID: PMC8529595 DOI: 10.1021/acsomega.1c03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
We have studied for the first time the role of hydrophobicity of the mesoporous silicate SBA-15 on the activity and the service life of a catalyst in the peroxide oxidation of sulfur-containing compounds. Immobilization of the molybdate anion on the SBA-15 support via ionic bonding with triethylammonium groups allows us not only to decrease the reaction temperature to a relatively low value of 60 °C without a drop in the dibenzothiophene conversion degree but also to increase the service life of the catalyst to many times that of the known analogs. The support and catalyst structures were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy. Immobilization of the molybdate anion on the SBA-15 support, modified with ammonium species, prevents the leaching of active sites. However, only alkyl-substituted ammonium species minimize DBT sulfone adsorption, which significantly increases the catalyst's service life. The synthesized catalyst Mo/Et3N-SBA-15 with hydrophobic properties is not sensitive to the initial sulfur content and hydrogen peroxide amount and retains its activity for at least six cycles of oxidation without regeneration. These catalysts can be efficiently used for clean fuel production.
Collapse
Affiliation(s)
- Argam V. Akopyan
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Polina D. Polikarpova
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Nina V. Arzyaeva
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander V. Anisimov
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga V. Maslova
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga V. Senko
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian
Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| | - Elena N. Efremenko
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian
Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| |
Collapse
|
8
|
Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts 2021. [DOI: 10.3390/catal11091131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, the current advantages and disadvantages of using metal-containing nanocatalysts (NCs) for deep chemical oxidative desulfurization (ODS) of liquid fuels are reviewed. A similar analysis is performed for the oxidative biodesulfurization of oil along the 4S-pathway, catalyzed by various aerobic bacterial cells of microorganisms. The preferences of using NCs for the oxidation of organic sulfur-containing compounds in various oil fractions seem obvious. The text discusses the development of new chemical and biocatalytic approaches to ODS, including the use of both heterogeneous NCs and anaerobic microbial biocatalysts that catalyze the reduction of chemically oxidized sulfur-containing compounds in the framework of methanogenesis. The addition of anaerobic biocatalytic stages to the ODS of liquid fuel based on NCs leads to the emergence of hybrid technologies that improve both the environmental characteristics and the economic efficiency of the overall process. The bioconversion of sulfur-containing extracts from fuels with accompanying hydrocarbon residues into biogas containing valuable components for the implementation of C-1 green chemistry processes, such as CH4, CO2, or H2, looks attractive for the implementation of such a hybrid process.
Collapse
|
9
|
Akopyan AV, Kulikov LA, Polikarpova PD, Shlenova AO, Anisimov AV, Maximov AL, Karakhanov EA. Metal-Free Oxidative Desulfurization Catalysts Based on Porous Aromatic Frameworks. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Argam V. Akopyan
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Leonid A. Kulikov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Polina D. Polikarpova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anna O. Shlenova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander V. Anisimov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anton L. Maximov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- A.V.Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Eduard A. Karakhanov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
10
|
Akopyan A, Polikarpova P, Vutolkina A, Cherednichenko K, Stytsenko V, Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Oxidative desulfurization is a promising way to produce, under mild conditions, clean ecological fuels with ultra-low sulfur content. Herein, we present for the first time heterogeneous catalysts based on natural aluminosilicate nanotubes (halloysite) loaded with transition metal oxides for oxidative sulfur removal using hydrogen peroxide as environmentally safe oxidant. The halloysite nanotubes (HNTs) provide acid sites for C–S bond scission, while the Mo and W oxides act as hydrogen peroxide activators. The structure and acidity of both the clay support and catalysts were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy techniques. These clay-based catalysts revealed the high activity in the oxidation of various classes of sulfur-containing compounds (sulfides, heteroatomic sulfur compounds) under mild reaction conditions. The conversion of various substrates decreases in the following trend: MeSPh > Bn2S > DBT > 4-MeDBT > BT, which deals with substrate electron density and steric hindrance. The influence of the temperature, oxidant to sulfur molar ratio, and reaction time on catalytic behavior was evaluated for Mo- and W-containing systems with various metal content. The complete oxidation of the most intractable dibenzothiophene to the corresponding sulfone was achieved at 80 °C and H2O2:S = 6:1 (molar) for 2 h both for Mo- and W-containing systems. These transition metal oxides HNTs supported catalysts are stable for 10 cycles of dibenzothiophene oxidation, which makes them promising systems for clean fuel production.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Valentine Stytsenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| |
Collapse
|
11
|
Efficient catalyst development for deep aerobic photocatalytic oxidative desulfurization: recent advances, confines, and outlooks. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2021. [DOI: 10.1080/01614940.2020.1864859] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Eseva E, Akopyan A, Schepina A, Anisimov A, Maximov A. Deep aerobic oxidative desulfurization of model fuel by Anderson-type polyoxometalate catalysts. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Senko OV, Maslova OV, Efremenko EN. Optimization potential of anaerobic biocatalytic processes using intracellular ATP concentration as the main criterion for decision making. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/848/1/012080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Akopyan A, Eseva E, Polikarpova P, Kedalo A, Vutolkina A, Glotov A. Deep Oxidative Desulfurization of Fuels in the Presence of Brönsted Acidic Polyoxometalate-Based Ionic Liquids. Molecules 2020; 25:E536. [PMID: 31991874 PMCID: PMC7037028 DOI: 10.3390/molecules25030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022] Open
Abstract
Polyoxometalate-based ionic liquid hybrid materials with a pyridinium cation, containing Brönsted acid sites, were synthesized and used as catalysts for the oxidation of model and real diesel fuels. Keggin-type polyoxometalates with the formulae [PMo12O40]3-, [PVMo11O40]4-, [PV2Mo10O40]4-, [PW12O40]3- were used as anions. It was shown that increasing the acid site strength leads to an increase of dibenzothiophene conversion to the corresponding sulfone. The best results were obtained in the presence of a catalyst, containing a nicotinic acid derivative as cation and phosphomolybdate as anion. The main factors affecting the process consisting of catalyst dosage, temperature, reaction time, oxidant dosage were investigated in detail. Under optimal conditions full oxidation of dibenzothiophene and more than a 90% desulfurization degree of real diesel fuel (initial sulfur content of 2050 ppm) were obtained (the oxidation conditions: NK-1 catalyst, molar ratio H2O2:S 10:1, molar ratio S:Mo 8:1, 1 mL MeCN, 70 °C, 1 h). The synthesized catalysts could be used five times with a slight decrease in activity.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Ekaterina Eseva
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Anastasia Kedalo
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia
| | - Aleksandr Glotov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia
| |
Collapse
|
15
|
Karakhanov E, Akopyan A, Golubev O, Anisimov A, Glotov A, Vutolkina A, Maximov A. Alkali Earth Catalysts Based on Mesoporous MCM-41 and Al-SBA-15 for Sulfone Removal from Middle Distillates. ACS OMEGA 2019; 4:12736-12744. [PMID: 31460396 PMCID: PMC6690565 DOI: 10.1021/acsomega.9b01819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mg, Ca, and Ba catalysts supported on structured mesoporous silica oxides types MCM-41 and Al-SBA-15 were synthesized and investigated in sulfone cracking for sulfur removal from oxidized diesel fuel. Functional materials and catalysts were characterized by low-temperature nitrogen adsorption/desorption, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy techniques. Catalytic tests were carried out in fixed-bed and batch reactors with a model compound dibenzothiophene sulfone and oxidized diesel fraction as a feed. MgO/MCM-41 and MgO/Al-MCM-41 possess high activity in sulfone cracking. The sulfur content in the diesel fraction decreases from initial 450 up to 100 ppmw. Catalysts can be regenerated for reuse in several cycles and may be potentially scaled up for industrial applications.
Collapse
Affiliation(s)
- Eduard Karakhanov
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Argam Akopyan
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Oleg Golubev
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander Anisimov
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Aleksandr Glotov
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Gubkin Russian
State University of Oil and Gas (National Research University), Leninsky Prospekt 65, Moscow 119991, Russia
| | - Anna Vutolkina
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Anton Maximov
- Chemistry Department, Lomonosov Moscow
State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospekt 29, Moscow 119991, Russia
| |
Collapse
|
16
|
Senko O, Maslova O, Gladchenko M, Gaydamaka S, Akopyan A, Lysenko S, Karakhanov E, Efremenko E. Prospective Approach to the Anaerobic Bioconversion of Benzo- and Dibenzothiophene Sulfones to Sulfide. Molecules 2019; 24:E1736. [PMID: 31060211 PMCID: PMC6539665 DOI: 10.3390/molecules24091736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Abstract
Sulfur recovery from organic molecules such as toxic sulfones is an actual problem, and its solution through the use of environmentally friendly and nature-like processes looks attractive for research and application. For the first time, the possible bioconversion of organic sulfones (benzo-and dibenzothiophene sulfones) to inorganic sulfide under anaerobic conditions with simultaneous biogas production from glucose within a methanogenesis process is demonstrated. Biogas with a methane content of 50.7%-82.1% was obtained without H2S impurities. Methanogenesis with 99.7%-100% efficiency and 97.8%-100% conversion of benzo- and dibenzothiophene sulfones (up to 0.45 mM) to inorganic sulfide were obtained in eight days by using a combination of various anaerobic biocatalysts immobilized in a poly(vinyl alcohol) cryogel. Pure cell cultures of sulfate-reducing bacteria and/or H2-producing bacteria were tested as additives to the methanogenic activated sludge. The immobilized activated sludge "enhanced" by bacterial additives appeared to retain its properties and be usable multiple times for the conversion of sulfones under batch conditions.
Collapse
Affiliation(s)
- Olga Senko
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow 119334, Russia.
| | - Olga Maslova
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Marina Gladchenko
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow 119334, Russia.
| | - Sergey Gaydamaka
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow 119334, Russia.
| | - Argam Akopyan
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Sergey Lysenko
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Eduard Karakhanov
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Elena Efremenko
- . Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow 119334, Russia.
| |
Collapse
|
17
|
Akopyan AV, Eseva EA, Polikarpova PD, Baigil’diev TM, Rodin IA, Anishnov AV. Catalytic Activity of Polyfunctional Ionic Liquids in Oxidation of Model Sulfur Organic Compounds. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219040141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|