1
|
Taha M, Rahim F, Uddin I, Amir M, Iqbal N, Wadood A, Khan KM, Uddin N, Rehman AU, Farooq RK. Discovering phenoxy acetohydrazide derivatives as urease inhibitors and molecular docking studies. J Biomol Struct Dyn 2024; 42:3118-3127. [PMID: 37211867 DOI: 10.1080/07391102.2023.2212794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Helicobacter pylori causes severe stomach disorders and the use of enzyme inhibitors for treatment is one of the possible therapies. The great biological potential of imine analogs as urease inhibitors has been the focus of researchers in past years. In this regard, we have synthesized twenty-one derivatives of dichlorophenyl hydrazide. These compounds were characterized by different spectroscopic techniques i.e. NMR and HREI-MS. Compounds 2 and 10 were found to be the most active in the series. Structure-activity relationship has been established for all compounds based on different substituents attached to the phenyl ring that play a vital role in enzyme inhibition. From the structure-activity relationship, it has been observed that these analogs showed excellent potential for urease and can be an alternate therapy in the future. The molecular docking study was performed to further explore the binding interactions of synthesized analogs with enzyme active sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Imad Uddin
- Department of Chemistry, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Mohd Amir
- Department of Natural Products & Alternative Medicine College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Design, synthesis, spectroscopic characterization, single crystal X-ray analysis, in vitro α-amylase inhibition assay, DPPH free radical evaluation and computational studies of naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles. Eur J Med Chem 2023; 250:115230. [PMID: 36863227 DOI: 10.1016/j.ejmech.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our quest to design and develop N/O-containing inhibitors of α-amylase, we have tried to synergize the inhibitory action of 1,4-naphthoquinone, imidazole and 1,2,3-triazole motifs by incorporating these structures into a single matrix. For this, a series of novel naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles is synthesized by a sequential approach involving [3 + 2] cycloaddition of 2-aryl-1-(prop-2-yn-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-diones with substituted azides. The chemical structures of all the compounds are established with the help of 1D-NMR, 2D-NMR, IR, mass and X-ray studies. The developed molecular hybrids are screened for their inhibitory action on the α-amylase enzyme using the reference drug, acarbose. Different substituents present on the attached aryl part of the target compounds show amazing variations in inhibitory action against the α-amylase enzyme. Based on the type of substituents and their respective positions, it is observed that compounds containing -OCH3 and -NO2 groups show more inhibition potential than others. All the tested derivatives display α-amylase inhibitory activity with IC50 values in the range of 17.83 ± 0.14 to 26.00 ± 0.17 μg/mL. Compound 2-(2,3,4-trimethoxyphenyl)-1-{[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl]methyl}-1H-naphtho[2,3-d]imidazole-4,9-dione (10y) show maximum inhibition of amylase activity with IC50 value 17.83 ± 0.14 μg/mL as compared to reference drug acarbose (18.81 ± 0.05 μg/mL). A molecular docking study of the most active derivative (10y) is performed with A. oryzae α-amylase (PDB ID: 7TAA) and it unveils favourable binding interactions within the active site of the receptor molecule. The dynamic studies reveal that the receptor-ligand complex is stable as the RMSD of less than 2 is observed in 100 ns molecular dynamic simulation. Also, the designed derivatives are assayed for their DPPH free radical scavenging ability and all of them exhibit comparable radical scavenging activity with the standard, BHT. Further, to assess their drug-likeness properties, ADME properties are also evaluated and all of them demonstrate worthy in silico ADME results.
Collapse
|
3
|
Aroua LM, Alosaimi AH, Alminderej FM, Messaoudi S, Mohammed HA, Almahmoud SA, Chigurupati S, Albadri AEAE, Mekni NH. Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 2023; 15:457. [PMID: 36839780 PMCID: PMC9963656 DOI: 10.3390/pharmaceutics15020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Abdulelah H. Alosaimi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Nejib H. Mekni
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- High Institute of Medical Technologies of Tunis, El Manar University, Tunis 1006, Tunisia
| |
Collapse
|
4
|
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer's Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020559. [PMID: 36677616 PMCID: PMC9860845 DOI: 10.3390/molecules28020559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.
Collapse
|
5
|
Synthesis, biological evaluation and molecular docking study of benzimidazole derivatives as α-glucosidase inhibitors and anti-diabetes candidates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Ullah H, Zada H, Khan F, Hayat S, Rahim F, Hussain A, Manzoor A, Wadood A, Ayub K, Rehman AU, Sarfaraz S. Benzimidazole bearing thiourea analogues: Synthesis, β-glucuronidase inhibitory potential and their molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Ullah H, Khan S, Rahim F, Taha M, Iqbal R, Sarfraz M, Shah SAA, Sajid M, Awad MF, Omran A, Albalawi MA, Abdelaziz MA, Al Areefy A, Jafri I. Benzimidazole Bearing Thiosemicarbazone Derivatives Act as Potent α-Amylase and α-Glucosidase Inhibitors; Synthesis, Bioactivity Screening and Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206921. [PMID: 36296520 PMCID: PMC9609971 DOI: 10.3390/molecules27206921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.
Collapse
Affiliation(s)
- Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
- Correspondence: (H.U.); (F.R.)
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
- Correspondence: (H.U.); (F.R.)
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Punjab 36050, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Awatif Omran
- Department of Biochemistry, College of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mahmoud A. Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Azza Al Areefy
- Clinical Nutrition Department, Applied Medical Science Collage, Jazan University, Jazan 45142, Saudi Arabia
- Faculty of Home Economics, Nutrition & Food Science Department, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| | - Ibrahim Jafri
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Khan S, Ullah H, Rahim F, Nawaz M, Hussain R, Rasheed L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ullah H, Uddin I, Rahim F, Khan F, Sobia, Taha M, Khan MU, Hayat S, Ullah M, Gul Z, Ullah S, Zada H, Hussain J. In vitro α-glucosidase and α-amylase inhibitory potential and molecular docking studies of benzohydrazide based imines and thiazolidine-4-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|