1
|
Huang C, Zhou S, Zhang C, Jin Y, Xu G, Zhou L, Ding G, Pang T, Jia S, Cao L. ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett 2022; 530:16-28. [PMID: 35033590 DOI: 10.1016/j.canlet.2022.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
DNA damage repair is a major barrier for chemotherapy efficacy of pancreatic ductal adenocarcinoma (PDAC), including the efficacy of platinum-based and gemcitabine/nab-paclitaxel treatments. N6-methyladenosine modifications (m6A) have recently been reported to play a role in homologous recombination (HR) repair of DNA double strand breaks (DSBs); however, the mechanism of action remains unknown. Our previous work indicated that fisetin may be a promising anti-tumour agent that induces DNA damage. In this study, we reported that fisetin induced DSBs and suppressed HR repair through m6A modification in PDAC cells. The m6A writer ZC3H13 and PHF10, which is a subunit of the PBAF chromatin remodelling complex, were identified as the main molecules affected by fisetin treatment. To our knowledge, it's the first time that PHF10 was found and involved in the DNA damage response. PHF10 loss-of-function resulted in elevated recruitment of γH2AX, RAD51, and 53BP1 to DSB sites and decreased HR repair efficiency. Moreover, ZC3H13 knockdown downregulated the m6A methylation of PHF10 and decreased PHF10 translation in a YTHDF1-dependent manner. In conclusion, our study demonstrates that fisetin enhanced DSBs via ZC3Hl3-mediated m6A modification of PHF10, which may provide insight into novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Chaojie Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Senhao Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Yifeng Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Gao Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Tianshu Pang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Conserved Structure and Evolution of DPF Domain of PHF10-The Specific Subunit of PBAF Chromatin Remodeling Complex. Int J Mol Sci 2021; 22:ijms222011134. [PMID: 34681795 PMCID: PMC8538644 DOI: 10.3390/ijms222011134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription activation factors and multisubunit coactivator complexes get recruited at specific chromatin sites via protein domains that recognize histone modifications. Single PHDs (plant homeodomains) interact with differentially modified H3 histone tails. Double PHD finger (DPF) domains possess a unique structure different from PHD and are found in six proteins: histone acetyltransferases MOZ and MORF; chromatin remodeling complex BAF (DPF1–3); and chromatin remodeling complex PBAF (PHF10). Among them, PHF10 stands out due to the DPF sequence, structure, and functions. PHF10 is ubiquitously expressed in developing and adult organisms as four isoforms differing in structure (the presence or absence of DPF) and transcription regulation functions. Despite the importance of the DPF domain of PHF10 for transcription activation, its structure remains undetermined. We performed homology modeling of the human PHF10 DPF domain and determined common and distinct features in structure and histone modifications recognition capabilities, which can affect PBAF complex chromatin recruitment. We also traced the evolution of DPF1–3 and PHF10 genes from unicellular to vertebrate organisms. The data reviewed suggest that the DPF domain of PHF10 plays an important role in SWI/SNF-dependent chromatin remodeling during transcription activation.
Collapse
|