1
|
Bathaei MJ, Singh R, Mirzajani H, Istif E, Akhtar MJ, Abbasiasl T, Beker L. Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207081. [PMID: 36401580 DOI: 10.1002/adma.202207081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm2 footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.
Collapse
Affiliation(s)
- Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul, 34083, Turkey
| | - Muhammad Junaid Akhtar
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Taher Abbasiasl
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (n2Star), Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| |
Collapse
|
2
|
Peng K, Mubarak S, Diao X, Cai Z, Zhang C, Wang J, Wu L. Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO 2: A Review from 2020 to 2022. Polymers (Basel) 2022; 14:polym14204320. [PMID: 36297898 PMCID: PMC9611929 DOI: 10.3390/polym14204320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The development of degradable plastic foams is in line with the current development concept of being pollution free and sustainable. Poly(lactic acid) (PLA) microporous foam with biodegradability, good heat resistance, biocompatibility, and mechanical properties can be successfully applied in cushioning packaging, heat insulation, noise reduction, filtration and adsorption, tissue engineering, and other fields. This paper summarizes and critically evaluates the latest research on preparing PLA microporous materials by supercritical carbon dioxide (scCO2) physical foaming since 2020. This paper first introduces the scCO2 foaming technologies for PLA and its composite foams, discusses the CO2-assisted foaming processes, and analyzes the effects of process parameters on PLA foaming. After that, the paper reviews the effects of modification methods such as chemical modification, filler filling, and mixing on the rheological and crystallization behaviors of PLA and provides an in-depth analysis of the mechanism of PLA foaming behavior to provide theoretical guidance for future research on PLA foaming. Lastly, the development and applications of PLA microporous materials based on scCO2 foaming technologies are prospected.
Collapse
Affiliation(s)
- Kangming Peng
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Suhail Mubarak
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu-si 59626, Jeonnam, Korea
| | - Xuefeng Diao
- Jinyoung (Xiamen) Advanced Materials Technology Co., Ltd., Xiamen 361028, China
| | - Zewei Cai
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chen Zhang
- School of Materials and Chemistry Engineering, Minjiang University, Xiyuangong Road No. 200, Fuzhou 350108, China
- Industrial Design Institute, Minjiang University, Xiyuangong Road No. 200, Fuzhou 350108, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| | - Jianlei Wang
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| |
Collapse
|