1
|
Arslan MA, Tunçel ÖK, Bilgici B, Karaustaoğlu A, Gümrükçüoğlu Tİ. Increased levels of lipid and protein oxidation in rat prefrontal cortex after treatment by lithium, valproic acid, and olanzapine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2721-2728. [PMID: 37093250 DOI: 10.1007/s00210-023-02494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Oxidative stress is widely accepted to contribute to the pathogenesis of several psychiatric diseases. Many antipsychotic drugs and mood stabilizers act through restoration of the dysregulated oxidative homeostasis in the brain. However, the long-term effect of these drugs per se in terms of their potential to interfere with the oxidative status in the brain remains largely controversial. The present study aimed to investigate the sole effect of three commonly used psychoactive drugs, lithium, valproic acid, and olanzapine, on lipid and protein oxidation status in the prefrontal cortex of healthy rats. A total of 80 adult male albino Wistar rats were used, and groups were treated with saline (control), lithium, valproic acid, or olanzapine daily for 30 days. Following sacrification, right prefrontal cortexes were dissected and homogenized. Lipid peroxidation (LPO) and protein oxidation (AOPP) assays were performed by ELISA. LPO levels were significantly higher in lithium and valproic acid-treated rats by 45% and 40%, respectively. Olanzapine treatment caused a mild 26% increase in LPO levels, but the effect was non-significant. Lithium, valproic acid, and olanzapine treatments significantly increased AOPP levels by 58%, 54%, and 36.5%, respectively. There was a strong positive correlation between the lipid peroxidation and protein oxidation levels. Our results call attention to the need to consider the pro-oxidative capacity of antipsychotic drugs per se and their potential to disturb the oxidative homeostasis in the brain during long-term medication for psychiatric diseases.
Collapse
Affiliation(s)
- Mehmet Alper Arslan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayıs University, Samsun, Turkey.
| | - Özgür Korhan Tunçel
- Faculty of Medicine, Department of Medical Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Birşen Bilgici
- Faculty of Medicine, Department of Medical Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Arzu Karaustaoğlu
- Faculty of Medicine, Department of Medical Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Taner İlker Gümrükçüoğlu
- Faculty of Medicine, Department of Medical Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Velásquez-Jiménez D, Corella-Salazar DA, Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Salazar-López NJ, Rodrigo-Garcia J, Villegas-Ochoa MA, González-Aguilar GA. Phenolic compounds that cross the blood-brain barrier exert positive health effects as central nervous system antioxidants. Food Funct 2021; 12:10356-10369. [PMID: 34608925 DOI: 10.1039/d1fo02017j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a physical structure whose main function is to strictly regulate access to circulating compounds into the central nervous system (CNS). Vegetable-derived phenolic compounds have been widely studied, with numerous epidemiologic and interventional studies confirming their health-related bioactivities across multiple cells, organs and models. Phenolics are non-essential xenobiotics, and should theoretically be unable to cross the BBB. The present work summarizes current experimental evidence that reveals that not only are phenolic compounds able to cross the BBB and bioaccumulate in the brain, but there is some stereoselectivity, which suggests the presence of specific transporters that allow them to reach the brain. Some molecules cross the BBB intact, while others do so only after being biotransformed or metabolized elsewhere. Once inside the CNS, they prevent or counter oxidative stress, which maintains the molecular, cellular, structural and functional integrity of the brain, and subsequently, overall human health.
Collapse
Affiliation(s)
- Dafne Velásquez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - Diana A Corella-Salazar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - B Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico.
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico.,Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California 21000, Mexico
| | - Joaquín Rodrigo-Garcia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, 32310 Ciudad Juárez, Chihuahua, Mexico
| | - Mónica A Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
3
|
Mezni A, Aoua H, Khazri O, Limam F, Aouani E. Lithium induced oxidative damage and inflammation in the rat's heart: Protective effect of grape seed and skin extract. Biomed Pharmacother 2017; 95:1103-1111. [PMID: 28922729 DOI: 10.1016/j.biopha.2017.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Lithium (Li) is a relevant mood stabilizer metal for the treatment of bipolar disorder (BD), as it protects from both depression and mania and reduces the risk of suicide. However, Lihas some clinical concerns as a narrow therapeutic index requiring routine monitoring of the serum level. The present study was designed to analyze the cardio-toxic side effect of Li and the ability of grape seed and skin extract (GSSE) to protect the heart against such toxicity. After 30days of exposure to Li (0, 2, 5 and 100mg/kg bw) and prevention with GSSE (4000mg/kg bw), rats were killed by decapitation and their heart processed for Li-induced oxidative stress. Data mainly showed that Li increased lipoperoxidation and protein carbonylation, it decreased superoxide dismutase and glutathione peroxidase activities, altered acetylcholinesterase (AChE) activity and increased the pro-inflammatory cytokine interleukin 6 (IL-6). Interestingly, GSSE efficiently alleviated all the deleterious effects of Li especially in low therapeutic doses. Based on our results, GSSE could be proposed as a nutritional supplement to mitigate the cardiotoxic side effects of lithium.
Collapse
Affiliation(s)
- Ali Mezni
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de BorjCedria, BP-901, 2050 Hammam-Lif, Tunisie; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie.
| | - Hanène Aoua
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de BorjCedria, BP-901, 2050 Hammam-Lif, Tunisie; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
| | - Olfa Khazri
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de BorjCedria, BP-901, 2050 Hammam-Lif, Tunisie; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
| | - Ferid Limam
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de BorjCedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Ezzeddine Aouani
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de BorjCedria, BP-901, 2050 Hammam-Lif, Tunisie; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
| |
Collapse
|