1
|
Kopylov AT, Ponomarenko EA, Ilgisonis EV, Pyatnitskiy MA, Lisitsa AV, Poverennaya EV, Kiseleva OI, Farafonova TE, Tikhonova OV, Zavialova MG, Novikova SE, Moshkovskii SA, Radko SP, Morukov BV, Grigoriev AI, Paik YK, Salekdeh GH, Urbani A, Zgoda VG, Archakov AI. 200+ Protein Concentrations in Healthy Human Blood Plasma: Targeted Quantitative SRM SIS Screening of Chromosomes 18, 13, Y, and the Mitochondrial Chromosome Encoded Proteome. J Proteome Res 2018; 18:120-129. [PMID: 30480452 DOI: 10.1021/acs.jproteome.8b00391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sergey A Moshkovskii
- Institute of Biomedical Chemistry , Moscow 119435 , Russia.,Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| | - Boris V Morukov
- Institute of Medico-Biological Problems , Moscow 123007 , Russia
| | | | - Young-Ki Paik
- Yonsei Proteome Research Center , Yonsei University , Seoul 03722 , Korea
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,Department of Molecular Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia.,Department of Systems Biology , Agricultural Biotechnology Research Institute of Iran , Karaj , Iran
| | - Andrea Urbani
- Area of Diagnostic Laboratories , Fondazione Policlinico Gemelli-IRCCS , Rome 00168 , Italy.,Institute of Biochemistry and Clinical Biochemistry , Catholic University of the Sacred Heart , Rome 00168 , Italy
| | - Victor G Zgoda
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| | | |
Collapse
|
2
|
Chiang MH, Sung WC, Lien SP, Chen YZ, Lo AFY, Huang JH, Kuo SC, Chong P. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum Vaccin Immunother 2016; 11:1065-73. [PMID: 25751377 DOI: 10.1080/21645515.2015.1010910] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Acinetobacter baumannii (Ab) is a global emerging bacterium causing nosocomial infections such as pneumonia, meningitis, bacteremia and soft tissue infections especially in intensive care units. Since Ab is resistant to almost all conventional antibiotics, it is now one of the 6 top-priorities of the dangerous microorganisms listed by the Infectious Disease Society of America. The development of vaccine is one of the most promising and cost-effective strategies to prevent infections. In this study, we identified potential protective vaccine candidates using reverse vaccinology. We have analyzed 14 on-line available Ab genome sequences and found 2752 homologous core genes. Using information obtained from immuno-proteomic experiments, published proteomic information and the bioinformatics PSORTb v3.0 software to predict the location of extracellular and/or outer membrane proteins, 77 genes were identified and selected for further studies. After excluding those antigens have been used as vaccine candidates reported by the in silico search-engines of PubMed and Google Scholar, 13 proteins could potentially be vaccine candidates. We have selected and cloned the genes of 3 antigens that were further expressed and purified. These antigens were found to be highly immunogenic and conferred partial protection (60%) in a pneumonia animal model. The strategy described in the present study incorporates the advantages of reverse vaccinology, bioinformatics and immuno-proteomic platform technologies and is easy to perform to identify novel immunogens for multi-component vaccines development.
Collapse
Affiliation(s)
- Ming-Hsien Chiang
- a Vaccine R&D Center; National Institute of Infectious Diseases and Vaccinology ; National Health Research Institutes ; Zhunan Town , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|