1
|
Antonets KS, Sargsyan HM, Nizhnikov AA. A Glutamine/Asparagine-Rich Fragment of Gln3, but not the Full-Length Protein, Aggregates in Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2017; 81:407-13. [PMID: 27293098 DOI: 10.1134/s0006297916040118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amino acid sequence of protein Gln3 in yeast Saccharomyces cerevisiae has a region enriched with Gln (Q) and Asn (N) residues. In this study, we analyzed the effects of overexpression of Gln3 and its Q/N-rich fragment fused with yellow fluorescent protein (YFP). Being overexpressed, full-length Gln3-YFP does not form aggregates, inhibits vegetative growth, and demonstrates nuclear localization, while the Q/N-rich fragment (Gln3QN) fused with YFP forms aggregates that do not colocalize with the nucleus and do not affect growth of the cells. Although detergent-resistant aggregates of Gln3QN are formed in the absence of yeast prions, the aggregation of Gln3QN significantly increases in the presence of [PIN(+)] prion, while in the presence of two prions, [PSI(+)] and [PIN(+)], the percentage of cells with Gln3QN aggregates is significantly lower than in the strain bearing only [PIN(+)]. Data on colocalization demonstrate that this effect is mediated by interaction between Gln3QN aggregates and [PSI(+)] and [PIN(+)] prions.
Collapse
Affiliation(s)
- K S Antonets
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|
2
|
Nizhnikov AA, Ryzhova TA, Volkov KV, Zadorsky SP, Sopova JV, Inge-Vechtomov SG, Galkin AP. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006504. [PMID: 28027291 PMCID: PMC5189945 DOI: 10.1371/journal.pgen.1006504] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae. The data presented in the paper deepens and enriches the concept of protein-based inheritance. According to this concept, prion conformational switches change protein functional activity, and such changes are inherited. Here, for the first time, we demonstrate that heritable traits may appear not only due to a conformational switch of one protein but also can be caused by interactions between different prions. To identify the novel epigenetic factor that causes suppression of nonsense mutations in yeast, we applied our original method of proteomic screening of prions. We have shown that two yeast proteins, which normally do not interact, in prion form demonstrate genetic interaction: one is the key determinant of the suppression of nonsense mutation, while the second enhances this effect. Thus, by analogy with monogenic and polygenic inheritance, in the framework of the prion concept, we can distinguish “monoprionic” and “polyprionic” inheritance. We assume that new examples of polyprionic inheritance will be revealed using modern proteomic methods for identification of prions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Tatyana A Ryzhova
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Kirill V Volkov
- St. Petersburg State University, Research Park, Research Resource Center "Molecular and Cell Technologies", St. Petersburg, Russian Federation
| | - Sergey P Zadorsky
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Julia V Sopova
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Sergey G Inge-Vechtomov
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Alexey P Galkin
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Antonets KS, Volkov KV, Maltseva AL, Arshakian LM, Galkin AP, Nizhnikov AA. Proteomic Analysis of Escherichia coli Protein Fractions Resistant to Solubilization by Ionic Detergents. BIOCHEMISTRY (MOSCOW) 2016; 81:34-46. [PMID: 26885581 DOI: 10.1134/s0006297916010041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloids are protein fibrils adopting structure of cross-beta spine exhibiting either pathogenic or functionally significant properties. In prokaryotes, there are several groups of functional amyloids; however, all of them were identified by specialized approaches that do not reveal all cellular amyloids. Here, using our previously developed PSIA (Proteomic Screening and Identification of Amyloids) approach, we have conducted a proteomic screening for candidates for novel amyloid-forming proteins in Escherichia coli as one of the most important model organisms and biotechnological objects. As a result, we identified 61 proteins in fractions resistant to treatment with ionic detergents. We found that a fraction of proteins bearing potentially amyloidogenic regions predicted by bioinformatics algorithms was 3-5-fold more abundant among the identified proteins compared to those observed in the entire E. coli proteome. Almost all identified proteins contained potentially amyloidogenic regions, and four of them (BcsC, MukB, YfbK, and YghJ) have asparagine- and glutamine-rich regions underlying a crucial feature of many known amyloids. In this study, we demonstrate for the first time that at the proteome level there is a correlation between experimentally demonstrated detergent-resistance of proteins and potentially amyloidogenic regions predicted by bioinformatics approaches. The data obtained enable further comprehensive characterization of entirety of amyloids (or amyloidome) in bacterial cells.
Collapse
Affiliation(s)
- K S Antonets
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia.
| | | | | | | | | | | |
Collapse
|
4
|
Matveenko AG, Belousov MV, Bondarev SA, Moskalenko SE, Zhouravleva GA. Identification of new genes that affect [PSI +] prion toxicity in Saccharomyces cerevisiae yeast. Mol Biol 2016. [DOI: 10.1134/s0026893316050113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG. Amyloids: from Pathogenesis to Function. BIOCHEMISTRY (MOSCOW) 2016; 80:1127-44. [PMID: 26555466 DOI: 10.1134/s0006297915090047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The term "amyloids" refers to fibrillar protein aggregates with cross-β structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics.
Collapse
Affiliation(s)
- A A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|