1
|
Pepin R, Laszlo KJ, Marek A, Peng B, Bush MF, Lavanant H, Afonso C, Tureček F. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1647-60. [PMID: 27400696 PMCID: PMC5031493 DOI: 10.1007/s13361-016-1437-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 05/18/2023]
Abstract
Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Robert Pepin
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Kenneth J Laszlo
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bo Peng
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Matthew F Bush
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Helène Lavanant
- Laboratoire COBRA CNRS UMR 6014 & FR 3038, Université de Rouen, INSA de Rouen, Mont St Aignan Cedex, France
| | - Carlos Afonso
- Laboratoire COBRA CNRS UMR 6014 & FR 3038, Université de Rouen, INSA de Rouen, Mont St Aignan Cedex, France
| | - František Tureček
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Pepin R, Laszlo KJ, Peng B, Marek A, Bush MF, Tureček F. Comprehensive Analysis of Gly-Leu-Gly-Gly-Lys Peptide Dication Structures and Cation-Radical Dissociations Following Electron Transfer: From Electron Attachment to Backbone Cleavage, Ion–Molecule Complexes, and Fragment Separation. J Phys Chem A 2013; 118:308-24. [DOI: 10.1021/jp411100c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Robert Pepin
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kenneth J. Laszlo
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Peng
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Aleš Marek
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Maury JJP, Ng D, Bi X, Bardor M, Choo ABH. Multiple Reaction Monitoring Mass Spectrometry for the Discovery and Quantification of O-GlcNAc-Modified Proteins. Anal Chem 2013; 86:395-402. [DOI: 10.1021/ac401821d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| | - Daniel Ng
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Xuezhi Bi
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Muriel Bardor
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Université de Rouen, Laboratoire Glycobiologie et Matrice
Extracellulaire Végétale (Glyco-MEV) EA 4358, Institut
de Recherche et d’Innovation Biomédicale (IRIB), Faculté
des Sciences et Techniques, 76821 Mont-Saint-Aignan Cédex, France
| | - Andre Boon-Hwa Choo
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| |
Collapse
|
4
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
5
|
Moss CL, Chamot-Rooke J, Nicol E, Brown J, Campuzano I, Richardson K, Williams JP, Bush MF, Bythell B, Paizs B, Turecek F. Assigning Structures to Gas-Phase Peptide Cations and Cation-Radicals. An Infrared Multiphoton Dissociation, Ion Mobility, Electron Transfer, and Computational Study of a Histidine Peptide Ion. J Phys Chem B 2012; 116:3445-56. [DOI: 10.1021/jp3000784] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher L. Moss
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700,
Seattle, Washington 981915-1700, United States
| | - Julia Chamot-Rooke
- Laboratoire des Mécanismes
Réactionnels, CNRS, École Polytechnique, Palaiseau, France
| | - Edith Nicol
- Laboratoire des Mécanismes
Réactionnels, CNRS, École Polytechnique, Palaiseau, France
| | - Jeffery Brown
- Waters Corporation, Floats Road, Wythenshawe, Manchester,
M23 9LZ, United Kingdom
| | - Iain Campuzano
- Waters Corporation, Floats Road, Wythenshawe, Manchester,
M23 9LZ, United Kingdom
| | - Keith Richardson
- Waters Corporation, Floats Road, Wythenshawe, Manchester,
M23 9LZ, United Kingdom
| | - Jonathan P. Williams
- Waters Corporation, Floats Road, Wythenshawe, Manchester,
M23 9LZ, United Kingdom
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700,
Seattle, Washington 981915-1700, United States
| | | | - Bela Paizs
- German Cancer Research Center, Heidelberg,
Germany
| | - Frantisek Turecek
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700,
Seattle, Washington 981915-1700, United States
| |
Collapse
|
6
|
Li W, Song C, Bailey DJ, Tseng GC, Coon JJ, Wysocki VH. Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal Chem 2011; 83:9540-5. [PMID: 22022956 DOI: 10.1021/ac202327r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer dissociation (ETD) is an alternative peptide dissociation method developed in recent years. Compared with the traditional collision induced dissociation (CID) b and y ion formation, ETD generates c and z ions and the backbone cleavage is believed to be less selective. We have reported previously the application of a statistical data mining strategy, K-means clustering, to discover fragmentation patterns for CID, and here we report application of this approach to ETD spectra. We use ETD data sets from digestions with three different proteases. Data analysis shows that selective cleavages do exist for ETD, with the fragmentation patterns affected by protease, charge states, and amino acid residue compositions. It is also noticed that the c(n-1) ion, corresponding to loss of the C-terminal amino acid residue, is statistically strong regardless of the residue at the C-terminus of the peptide, which suggests that the peptide gas phase conformation plays an important role in the dissociation pathways. These patterns provide a basis for mechanism elucidation, spectral prediction, and improvement of ETD peptide identification algorithms.
Collapse
Affiliation(s)
- Wenzhou Li
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|