1
|
Kamboj M, Keerthika R, Narwal A, Gupta A, Devi A, Kumar A, Sharma G. The intriguing role of IL33/ST2 axis signaling in oral diseases - A systematic review. Adv Med Sci 2024; 69:264-271. [PMID: 38705460 DOI: 10.1016/j.advms.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Oral diseases act as a silent epidemic, and the pathogenetic role of interleukin-33/suppression of tumorigenicity-2 axis (IL-33/ST2) remains unclear due to a lack of literature. This review has attempted to highlight the importance of this axis in oral diseases, which may be helpful in developing therapeutic modalities required to halt disease progression. MATERIALS AND METHODS A thorough search was conducted using various databases. Original research articles that assessed both IL-33 and ST2 levels in oral diseases using different techniques were included in the review. The risk of bias for each study was analyzed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and Review Manager 5.4 was used to output the results. RESULTS In the qualitative data synthesis we included 13 published articles. The most commonly used method was serum estimation, while methods with optimistic results were saliva, real-time quantitative polymerase chain reaction and immunohistochemistry. The predominant mechanism of action was nuclear factor kappa B signaling and type 2 immune response. However, salivary gland epithelial cell activation, activation of mast cells, type 1 immune response, and upregulated angiogenesis are crucial in mediating IL-33/ST2 signaling in oral diseases. CONCLUSIONS Accumulating evidence demonstrates that the IL-33/ST2 axis is a fundamental pathogenetic mechanism of oral diseases of inflammatory, autoimmune, or neoplastic origin.
Collapse
Affiliation(s)
- Mala Kamboj
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India.
| | - R Keerthika
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anjali Narwal
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Ambika Gupta
- Department of Oral Medicine and Radiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Anju Devi
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Adarsh Kumar
- Department of Public Health Dentistry, Post Graduate Institute of Dental Sciences, PGIMS Campus, Pt BD Sharma University of Health Sciences, Rohtak, India
| | - Gitika Sharma
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
2
|
Kanazawa N, Iyoda M, Suzuki T, Tachibana S, Nagashima R, Honda H. Exploring the significance of interleukin-33/ST2 axis in minimal change disease. Sci Rep 2023; 13:18776. [PMID: 37907612 PMCID: PMC10618262 DOI: 10.1038/s41598-023-45678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Minimal change disease (MCD), a common cause of idiopathic nephrotic syndrome, has been postulated to exhibit an association with allergic conditions. Recent studies revealed the crucial role of interleukin (IL)-33 in type 2 innate immunity. We hypothesized that development of MCD involves an IL-33-related immune response. We examined 49 patients with biopsy-proven MCD, 6 healthy volunteers, and 29 patients in remission. In addition to clinical features, serum and urinary levels of IL-33 and soluble suppression of tumorigenicity 2 protein (sST2), a secreted form of the receptor of IL-33, were analyzed. Although IL-33 was barely detectable in either MCD or control samples, sST2 levels at diagnosis were elevated in MCD patients. Serum sST2 levels of MCD patients were correlated with serum total protein level (r = - 0.36, p = 0.010) and serum creatinine level (r = 0.34, p = 0.016). Furthermore, the elevated sST2 levels were observed to decrease following remission. Immunofluorescence revealed IL-33 expression in the podocytes among MCD patients, with a significant increase compared with controls. In vitro, mouse podocyte cells incubated with serum from a MCD patient at disease onset showed increased IL-33 secretion. These results suggest an IL-33-related immune response plays a role in MCD.
Collapse
Affiliation(s)
- Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
- Department of Microbiology and Immunology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Wang M, Gao M, Yi Z. Biological effects of IL-33/ST2 axis on oral diseases: autoimmune diseases and periodontal diseases. Int Immunopharmacol 2023; 122:110524. [PMID: 37393839 DOI: 10.1016/j.intimp.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
IL-33 is a relatively new member of the IL-1 cytokine family, which plays a unique role in autoimmune diseases, particularly some oral diseases dominated by immune factors. The IL-33/ST2 axis is the main pathway by which IL-33 signals affect downstream cells to produce an inflammatory response or tissue repair. As a newly discovered pro-inflammatory cytokine, IL-33 can participate in the pathogenesis of autoimmune oral diseases such as Sjogren's syndrome and Behcet's disease. Moreover, the IL-33/ST2 axis also recruits and activates mast cells in periodontitis, producing inflammatory chemokines and mediating gingival inflammation and alveolar bone destruction. Interestingly, the high expression of IL-33 in the alveolar bone, which exhibits anti-osteoclast effects under appropriate mechanical loading, also confirms its dual role of destruction and repair in an immune-mediated periodontal environment. This study reviewed the biological effects of IL-33 in autoimmune oral diseases, periodontitis and periodontal bone metabolism, and elaborated its potential role and impact as a disease enhancer or a repair factor.
Collapse
Affiliation(s)
- Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingcen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
5
|
Dong Y, Ming B, Gao R, Mo Q, Wu X, Zheng F, Zhong J, Dong L. The IL-33/ST2 Axis Promotes Primary Sjögren's Syndrome by Enhancing Salivary Epithelial Cell Activation and Type 1 Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2652-2662. [PMID: 35649629 DOI: 10.4049/jimmunol.2101070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms of primary Sjögren's syndrome (pSS) are poorly understood. In this study, we explored the role of the IL-33/ST2 axis in the development of pSS. In the mouse model of experimental Sjögren's syndrome, we found that the saliva flow rate at weeks 4 and 30 was preserved in IL-33-/- and ST2-/- mice, compared with that of wild-type mice. At week 30 of experimental Sjögren's syndrome induction, the histological score, anti-nuclear Ab levels, and numbers of Th1 and B cells in draining lymph nodes of the salivary gland were lower in the IL-33-/- and ST2-/- mice, whereas Th17 cells and regulatory T cells were not changed. Primary salivary gland epithelial cells expressed the IL-33 receptor ST2. After stimulation with rIL-33, salivary gland epithelial cells increased the transcriptional levels of CD86 and CCL2, accompanied by the activation of the NF-κB inflammatory pathway. There was a synergistic effect between rIL-33 and rIL-12 in augmenting the production of IFN-γ in CD4+ T cells. In the pSS patients, the expression of IL-33 was elevated in the labial salivary gland, with the number of IL-33+ cells positively correlated with the score of the EULAR (European Alliance of Associations for Rheumatology) Sjögren's syndrome disease activity index (ESSDAI). ST2 was highly expressed in the cytoplasm of ductal epithelial cells, with low levels of expression in lymphatic infiltration sites. Our data suggest that the IL-33/ST2 axis may promote the development of pSS by enhancing salivary epithelial cell activation and the type 1 immune response.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Mo
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| |
Collapse
|
6
|
Sobsey CA, Froehlich B, Batist G, Borchers CH. Immuno-MALDI-MS for Accurate Quantitation of Targeted Peptides from Volume-Restricted Samples. Methods Mol Biol 2022; 2515:203-225. [PMID: 35776354 DOI: 10.1007/978-1-0716-2409-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The immuno-MALDI-MS method can be used to quantify low-abundance proteins from clinical samples that offer only a limited amount of material for analysis. An internal standard, in the form of a stable isotope-labeled peptide, is used to ensure reproducible and absolute quantitation. The protocol described here was optimized for the quantitation of AKT1 and AKT2, but we offer instructions on how to adapt the method to target other proteins. The described workflow is compatible with automation via a liquid handling robot for high-throughput applications.
Collapse
Affiliation(s)
- Constance A Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bjoern Froehlich
- University of Victoria - Genome BC Proteomics Centre, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Gerald Batist
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Exactis Innovation, Montreal, QC, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Serum IL-33 as a biomarker in different diseases: useful parameter or much need for clarification? J Circ Biomark 2021; 10:20-25. [PMID: 34858526 PMCID: PMC8634375 DOI: 10.33393/jcb.2021.2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, is critically involved in the modulation of the activity of a diverse range of immunocompetent cells. Essential roles have been implicated in cardioprotection, in both innate and adaptive immune responses in mucosal organs, and in the maintenance of adipose tissue cells. Over the past 10 years, several studies evaluated the usability of IL-33 as a biomarker in diseases of inflammatory and noninflammatory origin. Our group is currently evaluating the predictive role of serum IL-33 in acute kidney injury (AKI). The aim of the article is to discuss selected studies on IL-33 in different diseases and its potential role as a biomarker molecule.
Collapse
|
8
|
Quantitation of reduced IL-33 levels in human serum: mitigating interference from endogenous binding partners. Bioanalysis 2021; 13:1751-1760. [PMID: 34758642 DOI: 10.4155/bio-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: IL-33 is a potential therapeutic target but commercially available assays for the quantitation of systemic IL-33 have poor reliability. Results: In commercial IL-33 kits, interference from endogenous binding partners (e.g., soluble ST2) causes under-quantitation. Mitigating this required acid dissociation and addition of the detection reagent simultaneously with the capture step. This enabled detection of total, reduced (active) levels of IL-33 in human serum (LLOQ 6.25 pg/ml). Conclusion: Acid treatment of serum samples dissociates IL-33 from endogenous binding partners, increasing soluble ST2 tolerance to >1000 ng/ml. The modified method was specific for reduced endogenous IL-33. Analysis of over 300 samples from individuals with and without asthma and with different smoking status revealed no difference in serum IL-33.
Collapse
|
9
|
Dong Y, Zhong J, Dong L. IL-33 in Rheumatic Diseases. Front Med (Lausanne) 2021; 8:739489. [PMID: 34589505 PMCID: PMC8473687 DOI: 10.3389/fmed.2021.739489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor mainly expressed in barrier epithelium, endothelial cells, and fibroblast reticular cells. Some inflammatory cells also express IL-33 under certain conditions. The important role of IL-33 in allergic reactions, helminth infection, cancer, tissue fibrosis, chronic inflammation, organ transplantation, and rheumatic immune diseases has been extensively studied in recent years. IL-33 primarily activates various circulating and tissue-resident immune cells, including mast cell, group 2 innate lymphoid cell (ILC2), regulatory T cell (Treg), T helper 2 cell (Th2), natural killer cell (NK cell), and macrophage. Therefore, IL-33 plays an immunomodulatory role and shows pleiotropic activity in different immune microenvironments. The IL-33/serum stimulation-2 (ST2) axis has been shown to have a detrimental effect on rheumatoid arthritis, systemic lupus erythematosus, and other rheumatic diseases. Interestingly, IL-33 also plays a protective role in the repair of barrier epithelium and the activation of Tregs. Therefore, the role of IL-33/ST2 depends on the underlying pathological conditions in rheumatic diseases. This review focuses on the dual role of the IL-33/ST2 axis in rheumatic diseases.
Collapse
Affiliation(s)
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
11
|
Sundnes O, Ottestad W, Schjalm C, Lundbäck P, la Cour Poulsen L, Mollnes TE, Haraldsen G, Eken T. Rapid systemic surge of IL-33 after severe human trauma: a prospective observational study. Mol Med 2021; 27:29. [PMID: 33771098 PMCID: PMC8004436 DOI: 10.1186/s10020-021-00288-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Background Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. Methods Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. Results We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2–1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. Conclusions We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00288-1.
Collapse
Affiliation(s)
- Olav Sundnes
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway.,Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - William Ottestad
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Critical Care, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Peter Lundbäck
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway
| | - Lars la Cour Poulsen
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway
| | - Tom Eirik Mollnes
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway.,Reserach Laboratory, Nordland Hospital, Bodø, and K.G.Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guttorm Haraldsen
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway.
| | - Torsten Eken
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Critical Care, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
New perspectives on IL-33 and IL-1 family cytokines as innate environmental sensors. Biochem Soc Trans 2018; 46:1345-1353. [PMID: 30301844 DOI: 10.1042/bst20170567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-1 family cytokines are important initiators of innate immunity and host defence; however, their uncontrolled activities can cause tissue-damaging inflammation. Consequently, IL-1 family cytokines have sophisticated regulatory mechanisms to control their activities including proteolytic processing for their activation and the deployment of soluble receptors and receptor antagonists to limit their activities. IL-33 is a promoter of type 2 immunity and allergic inflammation through its alarmin activity that can rapidly initiate local immune responses by stimulating innate immune cells following exposure to environmental insults, pathogens, or sterile injury. Recent publications have provided new insights into how the range and duration of IL-33 activity is regulated by direct sensing of host-derived and exogenous proteolytic activities as well as oxidative changes during tissue damage. Here, we discuss how this impacts our understanding of the roles of IL-33 in initiating immune responses and the evidence that these sensing mechanisms might regulate the activities of other IL-1 family cytokines and their biological functions. Finally, we discuss translational challenges these discoveries pose for the accurate detection of different forms of these cytokines.
Collapse
|
13
|
Rivière E, Sellam J, Pascaud J, Ravaud P, Gottenberg JE, Mariette X. Serum IL-33 level is associated with auto-antibodies but not with clinical response to biologic agents in rheumatoid arthritis. Arthritis Res Ther 2018; 20:122. [PMID: 29884223 PMCID: PMC5994091 DOI: 10.1186/s13075-018-1628-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
TRIAL REGISTRATION Rotation or Change of Biotherapy After First Anti-TNF Treatment Failure for Rheumatoid Arthritis (ROC), registered 22 October 2009, NCT01000441.
Collapse
Affiliation(s)
- Elodie Rivière
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM UMR1184, Le Kremlin Bicêtre & Fontenay aux Roses, France
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Université Paris 6, INSERM UMRS 938, DHU i2B, Paris, France
| | - Juliette Pascaud
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM UMR1184, Le Kremlin Bicêtre & Fontenay aux Roses, France
| | - Philippe Ravaud
- Department of Epidemiology and Biostatistics, Hotel Dieu, Paris, France
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Diseases, Strasbourg University Hospital, Université de Strasbourg, Strasbourg, France
| | - Xavier Mariette
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM UMR1184, Le Kremlin Bicêtre & Fontenay aux Roses, France. .,Department of Rheumatology, Université Paris Sud, 63 rue Gabriel Péri, 94270, Le Kremlin Bicetre, France.
| |
Collapse
|
14
|
Ketelaar ME, Nawijn MC, Shaw DE, Koppelman GH, Sayers I. The challenge of measuring IL-33 in serum using commercial ELISA: lessons from asthma. Clin Exp Allergy 2017; 46:884-7. [PMID: 26850082 DOI: 10.1111/cea.12718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin-33 (IL-33) has been subject of extensive study in the context of inflammatory disorders, particularly in asthma. Many human biological samples, including serum, have been used to determine the protein levels of IL-33, aiming to investigate its involvement in asthma. Reliable methods are required to study the association of IL-33 with disease, especially considering the complex nature of serum samples. OBJECTIVE We evaluated four IL-33 ELISA kits, aiming to determine a robust and reproducible approach to quantifying IL-33 in human serum from asthma patients. METHODS IL-33 levels were investigated in serum of well-defined asthma patients by the Quantikine, DuoSet (both R&D systems), ADI-900-201 (Enzo Life Sciences), and SKR038 (GenWay Biotech Inc San Diego USA) immunoassays, as well as spiking experiments were performed using recombinant IL-33 and its soluble receptor IL-1RL1-a. RESULTS We show that 1) IL-33 is difficult to detect by ELISA in human serum, due to lack of sensitivity and specificity of currently available assays; 2) human serum interferes with IL-33 quantification, in part through IL-1RL1-a; and 3) using non-serum certified kits may lead to spurious findings. CONCLUSION AND CLINICAL RELEVANCE If IL-33 is to be studied in the serum of asthma patients and other diseases, a more sensitive and specific assay method is required, which will be vital for further understanding and targeting of the IL-33/IL-1RL1 axis in human disease.
Collapse
Affiliation(s)
- M E Ketelaar
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK.,University Medical Center Groningen, Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - M C Nawijn
- University Medical Center Groningen, Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - D E Shaw
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - G H Koppelman
- University Medical Center Groningen, Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - I Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Retamozo S, Flores-Chavez A, Consuegra-Fernández M, Lozano F, Ramos-Casals M, Brito-Zerón P. Cytokines as therapeutic targets in primary Sjögren syndrome. Pharmacol Ther 2017; 184:81-97. [PMID: 29092775 DOI: 10.1016/j.pharmthera.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary Sjögren syndrome (SjS) is a systemic autoimmune disease that may affect 1 in 1000 people (overwhelmingly women) and that can be a serious disease with excess mortality due to severe organ-specific involvements and the development of B cell lymphoma; systemic involvement clearly marks the disease prognosis, and strongly suggests the need for closer follow-up and more robust therapeutic management. Therapy is established according to the organ involved and severity. As a rule, the management of systemic SjS should be organ-specific, with glucocorticoids and immunosuppressive agents limited to potentially-severe involvements; unfortunately, the limited evidence available for these drugs, together with the potential development of serious adverse events, makes solid therapeutic recommendations difficult. The emergence of biological therapies has increased the therapeutic armamentarium available to treat primary SjS. Biologics currently used in SjS patients are used off-label and are overwhelmingly agents targeting B cells, but the most recent studies are moving on into the evaluation of targeting specific cytokines involved in the SjS pathogenesis. The most recent etiopathogenic advances in SjS are shedding some light in the search for new highly-selective biological therapies without the adverse effects of the standard drugs currently used (corticosteroids and immunosuppressant drugs). This review summarizes the potential pharmacotherapeutic options targeting the main cytokine families involved in the etiopathogenesis of primary SjS and analyzes potential insights for developing new therapies.
Collapse
Affiliation(s)
- Soledad Retamozo
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INICSA-UNC-CONICET), Córdoba, Argentina; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Alejandra Flores-Chavez
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Biomedical Research Unit 02, Clinical Epidemiology Research Unit, UMAE, Specialties Hospital, Western Medical Center, Mexican Institute for Social Security (IMSS), Guadalajara, Mexico; Postgraduate Program of Medical Science, University Center for Biomedical Research (CUIB), University of Colima, Colima, Mexico; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Manuel Ramos-Casals
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain.
| | - Pilar Brito-Zerón
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| |
Collapse
|
16
|
Interleukin-33 regulates intestinal inflammation by modulating macrophages in inflammatory bowel disease. Sci Rep 2017; 7:851. [PMID: 28404987 PMCID: PMC5429815 DOI: 10.1038/s41598-017-00840-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) that signals through the ST2 receptor has emerged as a critical modulator in several inflammatory disorders, including inflammatory bowel disease (IBD). However, the precise mechanisms by which IL-33 modulates IBD are controversial. The aim of this study was thus to clarify the role of IL-33 in IBD. The plasma levels of IL-33 were significantly decreased, but soluble ST2 levels were increased in patients with IBD compared to healthy individuals. Moreover, IL-33 restored goblet cell numbers and induced macrophage switching from the M1 to the M2 phenotype. These effects were sufficient to ameliorate colitis in dextran sodium sulfate, trinitrobenzene sulfonic acid, and peritoneal cavity cell transfer models. IL-33 facilitated goblet cell restoration via modulating macrophages toward the M2 phenotype. In addition, wound healing was significantly faster in IL-33-treated human monocyte-derived macrophages than in control cells, which could be attributed to increased polarisation into M2 macrophages. We found that patients with IBD show decreased serum levels of IL-33 compared with healthy individuals and that IL-33 can attenuate colitis and aid tissue repair in mice. The mechanism by which IL-33 exerts these effects appears to involve the stimulation of differentiation of goblet cells and M2 macrophages.
Collapse
|
17
|
Emerging Roles of IL-33/ST2 Axis in Renal Diseases. Int J Mol Sci 2017; 18:ijms18040783. [PMID: 28387719 PMCID: PMC5412367 DOI: 10.3390/ijms18040783] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Renal diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have a great impact on health care systems worldwide. Similar to cardiovascular diseases, renal diseases are inflammatory diseases involving a variety of cytokines. Primary causes of renal injury include ischemia, uremic toxins, bacteremia, or nephrotoxicity. Inflammation represents an important component following kidney injury. Interleukin (IL)-33 is a member of the IL-1 cytokine family, which is widely expressed in epithelial barrier tissues and endothelial cells, and mediates both tissue inflammation and repair responses. IL-33 is released as a nuclear alarmin in response to tissue damage and triggers innate and adaptive immune responses by binding to its receptor, suppression of tumorigenicity 2 (ST2). Recent evidence from clinical and experimental animal studies indicates that the IL-33/ST2 axis is involved in the pathogenesis of CKD, renal graft injury, systemic lupus nephritis, and AKI. In this review, we discuss the pathological and tissue reparative roles of the IL-33/ST2 pathway in different types of renal diseases.
Collapse
|
18
|
Sellam J, Rivière E, Courties A, Rouzaire PO, Tolusso B, Vital EM, Emery P, Ferraccioli G, Soubrier M, Ly B, Hendel Chavez H, Taoufik Y, Dougados M, Mariette X. Serum IL-33, a new marker predicting response to rituximab in rheumatoid arthritis. Arthritis Res Ther 2016; 18:294. [PMID: 27964756 PMCID: PMC5154136 DOI: 10.1186/s13075-016-1190-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent works have suggested a possible link between interleukin (IL)-33 and B-cell biology. We aimed to study the possible association between serum IL-33 detection and response to rituximab (RTX) in rheumatoid arthritis (RA) patients in different cohorts with an accurate enzyme-linked immunosorbent assay (ELISA). METHODS Serum IL-33, rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP), and high serum immunoglobulin (Ig)G levels were assessed in 111 RA patients receiving a first course of 2 g RTX (cohort 1) in an observational study and in 74 RA patients treated with the same schedule in routine care (cohort 2). Univariate and multivariate analyses identified factors associated with a European League Against Rheumatism (EULAR) response at 24 weeks. RESULTS At week 24, 84/111 (76%) and 54/74 (73%) patients reached EULAR response in cohorts 1 and 2, respectively. Serum IL-33 was detectable in only 33.5% of the patients. In the combined cohorts, the presence of RF or anti-CCP (odds ratio (OR) 3.27, 95% confidence interval (CI) 1.13-9.46; p = 0.03), high serum IgG (OR 2.32, 95% CI 1.01-5.33; p = 0.048), and detectable serum IL-33 (OR 2.40, 95% CI 1.01-5.72; p = 0.047) were all associated with RTX response in multivariate analysis. The combination of these three factors increased the likelihood of response to RTX. When serum IL-33 detection was added to seropositivity and serum IgG level, 100% of the patients with the three risk factors (corresponding to 9% of the population) responded to RTX (OR versus patients with none of the three risk factors 29.61, 95% CI 1.30-674.79; p = 0.034). CONCLUSION Detectable serum IL-33 may predict clinical response to RTX independently of, and synergistically with, auto-antibodies and serum IgG level. TRIAL REGISTRATION NCT01126541 ; 18 May 2010.
Collapse
Affiliation(s)
- Jérémie Sellam
- Université Paris 06, AP-HP St-Antoine hospital, Rheumatology Department, INSERM UMRS_938, DHU i2B, Paris, France. .,Service de Rhumatologie, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris, 75012, France.
| | - Elodie Rivière
- Université Paris-Sud, AP-HP Hôpitaux Universitaires Paris-Sud, Rheumatology Department, Center for Immunology of Viral Infections and Autoimmune Diseases INSERM U1184, Le Kremlin Bicêtre, France
| | - Alice Courties
- Université Paris 06, AP-HP St-Antoine hospital, Rheumatology Department, INSERM UMRS_938, DHU i2B, Paris, France
| | - Paul-Olivier Rouzaire
- Biological Immunology Department, ERTICa Research Group, Clermont-Ferrand University Hospital, Clermont-Ferrand, EA4677, France
| | - Barbara Tolusso
- Rheumatology Department, Catholic University of the Sacred Heart, Roma, Italy
| | - Edward M Vital
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Paul Emery
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Martin Soubrier
- Rheumatology Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bineta Ly
- Université Paris-Sud, AP-HP Hôpitaux Universitaires Paris-Sud, Rheumatology Department, Center for Immunology of Viral Infections and Autoimmune Diseases INSERM U1184, Le Kremlin Bicêtre, France
| | - Houria Hendel Chavez
- AP-HP Bicêtre Hospital, Biological Immunology Department, INSERM U1184, Le Kremlin Bicêtre, France
| | - Yassine Taoufik
- AP-HP Bicêtre Hospital, Biological Immunology Department, INSERM U1184, Le Kremlin Bicêtre, France
| | - Maxime Dougados
- Department of Rheumatology - Hôpital Cochin, Paris Descartes University, Assistance Publique - Hôpitaux de Paris, INSERM (U1153), Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France
| | - Xavier Mariette
- Université Paris-Sud, AP-HP Hôpitaux Universitaires Paris-Sud, Rheumatology Department, Center for Immunology of Viral Infections and Autoimmune Diseases INSERM U1184, Le Kremlin Bicêtre, France. .,Service de Rhumatologie, Hôpital de Bicêtre, 78 rue du Général Leclerc, Le Kremlin Bicêtre, 94275, France.
| |
Collapse
|
19
|
Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther 2016; 169:104-112. [PMID: 27365223 DOI: 10.1016/j.pharmthera.2016.06.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic airway inflammatory disorder with characteristic symptoms of dyspnea, wheeze, chest tightness and cough, and physiological abnormalities of variable airway obstruction, airway hyperresponsiveness, and in some patients with chronic long standing disease reduced lung function. The physiological abnormalities are due to chronic airway inflammation and underlying structural changes to the airway wall. The interaction between the airway epithelium and the environment is crucial to the pathobiology of asthma. Several recent discoveries have highlighted a crucial role of airway epithelial derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP). These cytokines are collectively known as epithelial "alarmins", which act solely or in concert to activate and potentiate the innate and humoral arms of the immune system in the presence of actual or perceive damage. Understanding the role of alarmins and how they are activated and released may allow the development of novel new therapeutics to treat asthma. This review describes the interactions between inhaled air, the pulmonary microbiome, airway epithelial cell layer and the alarmins, IL-25, IL-33 and TSLP. There is already compelling evidence for a role of TSLP in the airway responses to environmental allergens in allergic asthmatics, as well as in maintaining airway eosinophilic inflammation in these subjects. Further work is required to develop human monoclonal antibodies (hMabs) directed against IL-25 and IL-33 or their receptors, to help understand their role in the initiation and/or persistence of asthma.
Collapse
|
20
|
Abstract
OBJECTIVE Following tissue barrier breaches, interleukin-33 (IL-33) is released as an 'alarmin' to induce inflammation. Soluble suppression of tumorigenicity 2 (sST2), as an IL-33 decoy receptor, contributes to limit inflammation. We assessed the relationship between the IL-33/ST2 axis and markers of gut mucosal damage in patients with early (EHI) and chronic HIV infection (CHI) and elite controllers. DESIGN Analyses on patients with EHI and CHI were conducted to determine IL-33/sST2 changes over time. METHODS IL-33 and sST2 levels were measured in plasma. Correlations between sST2 levels and plasma viral load, CD4 and CD8 T-cell counts, expression of T-cell activation/exhaustion markers, gut mucosal damage, microbial translocation and inflammation markers, as well as kynurenine/tryptophan ratio were assessed. RESULTS Plasma sST2 levels were elevated in EHI compared with untreated CHI and uninfected controls, whereas IL-33 levels were comparable in all groups. In EHI, sST2 levels were positively correlated with the CD8 T-cell count and the percentage of T cells expressing activation and exhaustion markers, but not with viral load or CD4 T-cell count. Plasma sST2 levels also correlated with plasma levels of gut mucosal damage, microbial translocation and kynurenine/tryptophan ratio and for some markers of inflammation. Prospective analyses showed that early antiretroviral therapy had no impact on sST2 levels, whereas longer treatment duration initiated during CHI normalized sST2. CONCLUSION As sST2 levels were elevated in EHI and were correlated with CD8 T-cell count, immune activation, and microbial translocation, sST2 may serve as a marker of disease progression, gut damage and may directly contribute to HIV pathogenesis.
Collapse
|