1
|
Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F. Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. J Nanobiotechnology 2022; 20:479. [DOI: 10.1186/s12951-022-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractAccumulating evidence suggests that osteoclastogenesis and angiogenesis in subchondral bone are critical destructive factors in the initiation and progression of osteoarthritis (OA). Herein, methoxypolyethylene glycol amine (mPEG-NH2) modified polydopamine nanoparticles (PDA-PEG NPs) were synthesized for treating early OA. The cytotoxicity and reactive oxygen species (ROS) scavenging ability of PDA-PEG NPs were evaluated. The effects of PDA-PEG NPs on osteoclast differentiation and vessel formation were then evaluated. Further, PDA-PEG NPs were administrated to anterior cruciate ligament transection (ACLT)-induced OA mice. Results demonstrated that PDA-PEG NPs had low toxicity both in vitro and in vivo. PDA-PEG NPs could inhibit osteoclastogenesis via regulating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDA-PEG NPs suppressed osteoclast-related angiogenesis via down-regulating platelet-derived growth factor-BB (PDGF-BB). In vivo, PDA-PEG NPs inhibited subchondral bone resorption and angiogenesis, further rescuing cartilage degradation in OA mice. In conclusion, we demonstrated that PDA-PEG NPs deployment could be a potential therapy for OA.
Graphical Abstract
Collapse
|
2
|
Zhou F, Chu L, Liu X, He Z, Han X, Yan M, Qu X, Li X, Yu Z. Subchondral Trabecular Microstructure and Articular Cartilage Damage Variations Between Osteoarthritis and Osteoporotic Osteoarthritis: A Cross-sectional Cohort Study. Front Med (Lausanne) 2021; 8:617200. [PMID: 33604349 PMCID: PMC7884461 DOI: 10.3389/fmed.2021.617200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Osteoporotic osteoarthritis (OP-OA) is a specific type of OA. In this study, we aimed to assess the subchondral plate and rod microstructural differences between OA and OP-OA patients by using an individual trabeculae segmentation (ITS) system and to analyze the relationships between subchondral microstructures and cartilage damage in OA and OP-OA patients. Overall, 31 femoral heads were included in this study, which included 11 samples with OA and 13 samples with OP-OA; the normal control (NC) group contained 7 healthy femoral heads. ITS was performed to segment the subchondral trabecular bone into plate and rod trabeculae based on microcomputed tomography (micro-CT) images. We compared the plate and rod trabeculae of the subchondral trabecular bone between OA and OP-OA patients. The Osteoarthritis Research Society International (OARSI) score was employed to evaluate cartilage damage based on histological observations. Pearson's correlation coefficient and linear regression analysis were applied to analyze the relationships between subchondral microstructures and articular cartilage damage. Results showed that several microstructural parameters, including bone volume fraction (BV/TV), plate bone volume fraction (pBV/TV), rod bone volume fraction (rBV/TV), plate trabecular number (pTb.N), rod trabecular number (rTb.N), junction density between rod and plate (R-P Junc.D), and junction density between plate and plate (P-P Junc.D), were significantly decreased in patients with OP-OA compared with those in patients with OA (p < 0.05). Histological observations indicated that cartilage damage was more serious in patients with OP-OA than that in patients with OA (p < 0.05). Moreover, BV/TV, pBV/TV, pTb.N, and pTb.Th were significantly related to the OARSI score in both OA and OP-OA patients. These results indicated that there were differences in the subchondral rod and plate trabeculae between OA and OP-OA patients. Subchondral decreased plate trabeculae (pBV/TV, pTb.N, and pTb.Th) might account for cartilage damage in the progression of OP-OA. This study provided new insights to research OA when it is combined with OP.
Collapse
Affiliation(s)
- Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linyang Chu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuequan Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaofeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Lambova SN. Osteoarthritis - From New Insights into Disease Pathogenesis to Contemporary Personalized Therapeutic Strategy. Curr Rheumatol Rev 2021; 17:4-6. [PMID: 33423648 DOI: 10.2174/1573397116666210108095700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sevdalina N Lambova
- Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University - Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol 2020; 15:355-363. [PMID: 31068673 DOI: 10.1038/s41584-019-0221-y] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with pathologies of multiple joint tissues. Inflammation is associated with both OA pain and disease outcome and is therefore a major treatment target for OA and OA pain. Unlike TNF inhibitors and IL-1 inhibitors, established drugs such as glucocorticoids and methotrexate can reduce OA pain. Although central nociceptive pathways contribute to OA pain, crosstalk between the immune system and nociceptive neurons is central to inflammatory pain; therefore, new therapies might target this crosstalk. Newly identified drug targets, including neurotrophins and the granulocyte-macrophage colony-stimulating factor (GM-CSF)-CC-chemokine ligand 17 (CCL17) chemokine axis, offer the hope of better results but require clinical validation.
Collapse
Affiliation(s)
- Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and National Institute of Health Research Leeds Biomedical Research Centre, Leeds, UK
| | - Andrew D Cook
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Paul P Tak
- Department of Clinical Immunology & Rheumatology, Academic Medical Centre, Amsterdam University Medical Centre, Amsterdam, Netherlands. .,Department of Rheumatology, Ghent University, Ghent, Belgium. .,Department of Medicine, Cambridge University, Cambridge, UK. .,Flagship Pioneering, Cambridge, MA, USA.
| |
Collapse
|
5
|
Murphy CLM, McCarthy G. Knee osteoarthritis and bisphosphonates: Could BCP crystals be the missing link? Ann Rheum Dis 2019; 78:e141. [PMID: 30301715 DOI: 10.1136/annrheumdis-2018-214421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Claire-Louise M Murphy
- Department of Rheumatology, Homerton University Hospital NHS Foundation Trust, London, UK
| | - Geraldine McCarthy
- Department of Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Lems W. Response to: 'Knee osteoarthritis and bisphosphonates: Could BCP crystals be the missing link?' by Murphy et al. Ann Rheum Dis 2019; 78:e142. [PMID: 30389691 DOI: 10.1136/annrheumdis-2018-214493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Willem Lems
- Department of Rheumatology, VU University Medical Center, Amsterdam 1007MB, The Netherlands
| |
Collapse
|
7
|
Deveza LA, Bierma-Zeinstra SMA, van Spil WE, Oo WM, Saragiotto BT, Neogi T, van Middelkoop M, Hunter DJ. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis. BMJ Open 2018; 8:e023889. [PMID: 30573485 PMCID: PMC6303587 DOI: 10.1136/bmjopen-2018-023889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Randomised clinical trials to date investigating the efficacy of bisphosphonates in knee osteoarthritis (OA) have found divergent results, with a recent meta-analysis finding no superiority of these drugs over placebo. Whether particular patient subgroups are more likely to benefit from this therapy than others is still unclear. We aim to investigate the effects of bisphosphonates compared with a control group (placebo, no treatment, another active treatment) on clinical and structural outcomes in specific knee OA subpopulations with possible distinct rates of subchondral bone turnover. METHODS AND ANALYSIS Medline, Embase, Scopus, Web of Sciences and Cochrane Central Register of Controlled Trials will be searched from inception to February 2018. Randomised clinical trials will be eligible if they reported at least one potential treatment effect modifier at baseline: gender, menopausal status, age, body mass index, radiographic stage, knee pain severity, presence of bone marrow lesions, levels of biochemical markers of bone turnover (serum and/or urinary) and systemic bone mineral density status. Authors of original trials will be contacted to obtain individual patient data from each study. Risk of bias will be assessed using the Cochrane Collaboration's tool. The primary outcomes will include pain and radiographic joint space width loss. Studies using other MRI-based assessment of disease progression will also be eligible. Outcomes will be grouped into short-term (≤3 months), intermediate-term (>3 months; ≤12 months) and long-term (>12 months). Regression models will be used, adding an interaction term for each subgroup of interest to determine possible subgroup effects. There was no source of funding for this study. ETHICS AND DISSEMINATION Dissemination of our findings is planned to occur through conference presentations, publication in peer-reviewed journals and social media. No formal ethics approval is generally required as no new data collection will be undertaken. PROSPERO REGISTRATION NUMBER CRD42018093327.
Collapse
Affiliation(s)
- Leticia A Deveza
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sita M A Bierma-Zeinstra
- Department of Orthopedic Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of General Practice, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Willem Evert van Spil
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Win Min Oo
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bruno T Saragiotto
- School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Pain, Health and Lifestyle, Sydney, New South Wales, Australia
| | - Tuhina Neogi
- Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Oo WM, Yu SPC, Daniel MS, Hunter DJ. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs 2018; 23:331-347. [PMID: 30415584 DOI: 10.1080/14728214.2018.1547706] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a leading cause of pain and disability among adults with a current prevalence of around 15% and a predicted prevalence of 35% in 2030 for symptomatic OA. It is increasingly recognized as a heterogeneous multi-faceted joint disease with multi-tissue involvement of varying severity. Current therapeutic regimens for OA are only partially effective and often have significant associated toxicities. There are no disease-modifying drugs approved by the regulatory bodies. Areas covered: We reviewed the opportunities within key OA pathogenetic mechanism: cartilage catabolism/anabolism, pathological remodeling of subchondral bone and synovial inflammation to identify targeted disease-modifying osteoarthritis drugs, based on compounds currently in Phase II and III stages of clinical development in which x-ray and/or MRI was used as the structural outcome with/without symptomatic outcomes according to regulatory requirements. Expert opinion: Given the heterogeneity of the OA disease process and complex overlapping among these phenotypes, a 'one size fits all' approach used in most clinical trials would unlikely be practical and equally effective in all patients, as well as in all anatomical OA sites. On the other hand, it is a challenge to develop a targeted drug with high activity, specificity, potency, and bioavailability in the absence of toxicity for long-term use in this chronic disease of predominantly older adults. Further research and insight into evaluation methods for drug-targeted identification of early OA and specific characterization of phenotypes, improvement of methodological designs, and development/refinement of sensitive imaging and biomarkers will help pave the way to the successful discovery of disease-modifying drugs and the optimal administration strategies in clinical practice.
Collapse
Affiliation(s)
- Win Min Oo
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - Shirley Pei-Chun Yu
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - Matthew Sean Daniel
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - David John Hunter
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| |
Collapse
|