1
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2025; 33:313-321. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Hoffmann M, Hennighausen L. Spotlight on amino acid changing mutations in the JAK-STAT pathway: from disease-specific mutation to general mutation databases. Sci Rep 2025; 15:6202. [PMID: 39979591 PMCID: PMC11842829 DOI: 10.1038/s41598-025-90788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
The JAK-STAT pathway is central to cytokine signaling and controls normal physiology and disease. Aberrant activation via mutations that change amino acids in proteins of the pathway can result in diseases. While disease-centric databases like COSMIC catalog mutations in cancer, their prevalence in healthy populations remains underexplored. We systematically studied such mutations in the JAK-STAT genes by comparing COSMIC and the population-focused All of Us database. Our analysis revealed frequent mutations in all JAK and STAT domains, particularly among white females. We further identified three categories: Mutations uniquely found in All of Us that were associated with cancer in the literature but could not be found in COSMIC, underscoring COSMIC's limitations. Mutations unique to COSMIC underline their potential as drivers of cancer due to their absence in the general population. Mutations present in both databases, e.g., JAK2Val617Phe/V617F - widely recognized as a cancer driver in hematopoietic cells, but without disease associations in All of Us, raising the possibility that combinatorial SNPs might be responsible for disease development. These findings illustrate the complementarity of both databases for understanding mutation impacts and underscore the need for multi-mutation analyses to uncover genetic factors underlying complex diseases and advance personalized medicine.
Collapse
Affiliation(s)
- Markus Hoffmann
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Yamada S, Nagafuchi Y, Yamada M, Suzuki H, Natsumoto B, Ota M, Takazawa I, Hatano H, Kono M, Harada H, Shoda H, Okamura T, Kosaki K, Fujio K. A novel functional IKBKE variant activating NFAT in a patient with polyarthritis and a remittent fever. Front Immunol 2024; 15:1475179. [PMID: 39524436 PMCID: PMC11544129 DOI: 10.3389/fimmu.2024.1475179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background IKBKE is a negative regulator of T cell activation and one of the key activators of type I interferon (IFN) and NFκB signaling via non-classical pathways. The upstream single nucleotide polymorphism of IKBKE (rs2297550-G) is a genome-wide association study risk variant of systemic lupus erythematosus, and is associated with decreased IKBKE expression in T cells by expression quantitative trait locus analysis. Case presentation A 48-year-old female had a remittent fever, arthritis, and oral ulcers for 20 years. She had a poor response to corticosteroids or disease-modifying antirheumatic drugs, including the tumor necrosis factor-α antagonist, etanercept, and the anti-interleukin-6 receptor antibody, tocilizumab. Method She participated in the Initiative on Rare and Undiagnosed Disease (IRUD), and whole-exome sequencing (WES) was performed. Functional analyses were conducted by transfecting the identified variants into reporter cells to assess the activation of NFAT and NFκB signaling. Additionally, peripheral blood RNA- sequencing (RNA-seq) data were compared with those from healthy individuals to evaluate the gene expression profiles of immune cells. Result WES identified a novel heterozygous c.1877G>A, p(Cys626Tyr) variant in IKBKE. Functional analysis indicated that this variant led to increased activity of NFAT (p = 0.015) and decreased activity of NFκB and type I IFN (p = 0.00068 and 0.00044, respectively). The patient had a remarkably low proportion of Naïve CD4 T cells. RNA-seq of peripheral blood immune cell subsets revealed significant differences in gene expression, especially in T cells. Conclusion A novel functional heterozygous variant in IKBKE is described in a patient with a remittent fever and arthritis. The data suggest that IKBKE is an important negative regulator of inflammation, particularly in T cells, and this IKBKE variant might be the underlying cause of a novel autoinflammatory pathology.
Collapse
Affiliation(s)
- Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Takazawa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Kono
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Manipur I, Reales G, Sul JH, Shin MK, Longerich S, Cortes A, Wallace C. CoPheScan: phenome-wide association studies accounting for linkage disequilibrium. Nat Commun 2024; 15:5862. [PMID: 38997278 PMCID: PMC11245513 DOI: 10.1038/s41467-024-49990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Phenome-wide association studies (PheWAS) facilitate the discovery of associations between a single genetic variant with multiple phenotypes. For variants which impact a specific protein, this can help identify additional therapeutic indications or on-target side effects of intervening on that protein. However, PheWAS is restricted by an inability to distinguish confounding due to linkage disequilibrium (LD) from true pleiotropy. Here we describe CoPheScan (Coloc adapted Phenome-wide Scan), a Bayesian approach that enables an intuitive and systematic exploration of causal associations while simultaneously addressing LD confounding. We demonstrate its performance through simulation, showing considerably better control of false positive rates than a conventional approach not accounting for LD. We used CoPheScan to perform PheWAS of protein-truncating variants and fine-mapped variants from disease and pQTL studies, in 2275 disease phenotypes from the UK Biobank. Our results identify the complexity of known pleiotropic genes such as APOE, and suggest a new causal role for TGM3 in skin cancer.
Collapse
Affiliation(s)
- Ichcha Manipur
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK.
| | - Guillermo Reales
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
| | | | | | | | - Adrian Cortes
- Human Genetics and Genomics, GSK, Heidelberg, 69117, Germany
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Liu R, Shang X, Fu Y, Wang Y, Wang P, Yan S. Shared genetic architecture between hypothyroidism and rheumatoid arthritis: A large-scale cross-trait analysis. Mol Immunol 2024; 168:17-24. [PMID: 38368726 DOI: 10.1016/j.molimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND In recent years, mounting evidence has indicated a co-morbid relationship between hypothyroidism and rheumatoid arthritis (RA), however, the shared genetic factors underlying this association remain unclear. This study aims to investigate the common genetic architecture between hypothyroidism and RA. METHODS Genome-wide association study (GWAS) summary statistics from recently published studies were utilized to examine the genetic correlation, shared genetic loci, and potential causal relationship between hypothyroidism and RA. Statistical methods included linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), cross-trait meta-analyses, colocalization analysis, multi-marker analysis of genomic annotation (MAGMA), tissue-specific enrichment analysis (TSEA), functional enrichment analysis, and latent causal variable method (LCV). RESULTS Our study demonstrated a significant genetic correlation between hypothyroidism and RA(LDSC:rg=0.3803,p=7.23e-11;HDL:rg=0.3849,p=1.02e-21). Through cross-trait meta-analysis, we identified 1035 loci, including 43 novel genetic loci. By integrating colocalization analysis and the MAGMA algorithm, we found a substantial number of genes, such as PTPN22, TYK2, and CTLA-4, shared between the two diseases, which showed significant enrichment across 14 tissues. These genes were primarily associated with the regulation of alpha-beta T cell proliferation, positive regulation of T cell activation, positive regulation of leukocyte cell-cell adhesion, T cell receptor signaling pathway, and JAK-STAT signaling pathway. However, our study did not reveal a significant causal association between the two diseases using the LCV approach. CONCLUSION Based on these findings, there is a significant genetic correlation between hypothyroidism and RA, suggesting a shared genetic basis for these conditions.
Collapse
Affiliation(s)
- Ruiyan Liu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xin Shang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping Wang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Shuxun Yan
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
6
|
Chen Q, Chen Z, Li F, Zha H, He W, Jiang F, Wei J, Xu J, Li R, Cai L, Liu X. Discovery of highly potent and selective VEGFR2 kinase inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 257:115456. [PMID: 37216810 DOI: 10.1016/j.ejmech.2023.115456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Synovial angiogenesis is essential for the development of rheumatoid arthritis (RA). Human vascular endothelial growth factor receptor 2 tyrosine kinase (VEGFR2) is a direct target gene that is notably elevated in RA synovium. Herein, we report the identification of indazole derivatives as a novel class of potent VEGFR2 inhibitors. The most potent compound, compound 25, displayed single-digit nanomolar potency against VEGFR2 in biochemical assays and achieved good selectivity for other protein kinases in the kinome. In addition, compound 25 dose-dependently inhibited the phosphorylation of VEGFR2 in Human Umbilical Vein Endothelial Cells (HUVECs) and showed an anti-angiogenic effect, as evidenced by the inhibition of capillary-like tube formation in vitro. Moreover, compound 25 reduced the severity and development of adjuvant-induced arthritis in rats by inhibiting synovial VEGFR2 phosphorylation and angiogenesis. Overall, these findings provide evidence that compound 25 is a leading potential drug candidate for anti-arthritic and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Qingling Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zhuoying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Feilong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Haoyu Zha
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Wei He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jiamu Wei
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jiajia Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, PR China.
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
7
|
Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, Amariuta T, Too CL, Laufer VA, Scott IC, Viatte S, Takahashi M, Ohmura K, Murasawa A, Hashimoto M, Ito H, Hammoudeh M, Emadi SA, Masri BK, Halabi H, Badsha H, Uthman IW, Wu X, Lin L, Li T, Plant D, Barton A, Orozco G, Verstappen SMM, Bowes J, MacGregor AJ, Honda S, Koido M, Tomizuka K, Kamatani Y, Tanaka H, Tanaka E, Suzuki A, Maeda Y, Yamamoto K, Miyawaki S, Xie G, Zhang J, Amos CI, Keystone E, Wolbink G, van der Horst-Bruinsma I, Cui J, Liao KP, Carroll RJ, Lee HS, Bang SY, Siminovitch KA, de Vries N, Alfredsson L, Rantapää-Dahlqvist S, Karlson EW, Bae SC, Kimberly RP, Edberg JC, Mariette X, Huizinga T, Dieudé P, Schneider M, Kerick M, Denny JC, Matsuda K, Matsuo K, Mimori T, Matsuda F, Fujio K, Tanaka Y, Kumanogoh A, Traylor M, Lewis CM, Eyre S, Xu H, Saxena R, Arayssi T, Kochi Y, Ikari K, Harigai M, Gregersen PK, Yamamoto K, Louis Bridges S, Padyukov L, Martin J, Klareskog L, Okada Y, Raychaudhuri S. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat Genet 2022; 54:1640-1651. [PMID: 36333501 PMCID: PMC10165422 DOI: 10.1038/s41588-022-01213-w] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a highly heritable complex disease with unknown etiology. Multi-ancestry genetic research of RA promises to improve power to detect genetic signals, fine-mapping resolution and performances of polygenic risk scores (PRS). Here, we present a large-scale genome-wide association study (GWAS) of RA, which includes 276,020 samples from five ancestral groups. We conducted a multi-ancestry meta-analysis and identified 124 loci (P < 5 × 10-8), of which 34 are novel. Candidate genes at the novel loci suggest essential roles of the immune system (for example, TNIP2 and TNFRSF11A) and joint tissues (for example, WISP1) in RA etiology. Multi-ancestry fine-mapping identified putatively causal variants with biological insights (for example, LEF1). Moreover, PRS based on multi-ancestry GWAS outperformed PRS based on single-ancestry GWAS and had comparable performance between populations of European and East Asian ancestries. Our study provides several insights into the etiology of RA and improves the genetic predictability of RA.
Collapse
Affiliation(s)
- Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tiffany Amariuta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chun Lai Too
- Immunogenetics Unit, Allergy and Immunology Research Center, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health, Kuala Lumpur, Malaysia
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vincent A Laufer
- Department of Clinical Immunology and Rheumatology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Department of Pathology, Michigan Medicine, Ann Arbor, MI, USA
| | - Ian C Scott
- Haywood Academic Rheumatology Centre, Haywood Hospital, Midlands Partnership NHS Foundation Trust, Burslem, UK
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Niigata, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Immunology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Orthopaedic Surgery, Kurashiki Central Hospital, Kurashiki, Japan
| | - Mohammed Hammoudeh
- Rheumatology Division, Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Samar Al Emadi
- Rheumatology Division, Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Basel K Masri
- Department of Internal Medicine, Jordan Hospital, Amman, Jordan
| | - Hussein Halabi
- Section of Rheumatology, Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Humeira Badsha
- Dr. Humeira Badsha Medical Center, Emirates Hospital, Dubai, United Arab Emirates
| | - Imad W Uthman
- Department of Rheumatology, American University of Beirut, Beirut, Lebanon
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Suzanne M M Verstappen
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | | | - Suguru Honda
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Eiichi Tanaka
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Gang Xie
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jinyi Zhang
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center (ARC), Reade, Amsterdam, the Netherlands
| | - Irene van der Horst-Bruinsma
- Department of Rheumatology & Clinical Immunology/ARC, Amsterdam Institute for Infection and Immunity, Amsterdam UMC location Vrije Universiteit, Amsterdam, the Netherlands
| | - Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Katherine A Siminovitch
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology/ARC, Amsterdam Institute for Infection and Immunity, Amsterdam UMC location AMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Robert P Kimberly
- Center for Clinical and Translational Science, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Center for Clinical and Translational Science, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, Assistance Pubique - Hôpitaux de Paris, Hôpital Bicêtre, INSERM UMR1184, Le Kremlin Bicêtre, France
| | - Tom Huizinga
- Leiden University Medical Center, Leiden, the Netherlands
| | - Philippe Dieudé
- University of Paris Cité, Inserm, PHERE, F-75018, Paris, France
- Department of Rheumatology, Hôpital Bichat, APHP, Paris, France
| | - Matthias Schneider
- Department of Rheumatology & Hiller Research Unit Rheumatology, UKD, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Kerick
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- All of Us Research Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Matthew Traylor
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
- School of Clinical Medicine Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thurayya Arayssi
- Department of Internal Medicine, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsunori Ikari
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Division of Multidisciplinary Management of Rheumatic Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Harigai
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - S Louis Bridges
- Department of Medicine, Hospital for Special Surgery, New York, NY, USA
- Division of Rheumatology, Weill Cornell Medicine, New York, NY, USA
| | - Leonid Padyukov
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Javier Martin
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Huang M, Xu H. Genetic susceptibility to autoimmunity-Current status and challenges. Adv Immunol 2022; 156:25-54. [PMID: 36410874 DOI: 10.1016/bs.ai.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoimmune diseases (ADs) often arise from a combination of genetic and environmental triggers that disrupt the immune system's capability to properly tolerate body self-antigens. Familial studies provided the earliest insights into the risk loci of such diseases, while genome-wide association studies (GWAS) significantly broadened the horizons. A drug targeting a prominent pathological pathway can be applied to multiple indications sharing overlapping mechanisms. Advances in genomic technologies used in genetic studies provide critical insights into future research on gene-environment interactions in autoimmunity. This Review summarizes the history and recent advances in the understanding of genetic susceptibility to ADs and related immune disorders, including coronavirus disease 2019 (COVID-19), and their indications for the development of diagnostic or prognostic markers for translational applications.
Collapse
Affiliation(s)
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Navel Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Chen X, Wu Q, Cao X, Yang Y, Gong Z, Ren T, Du Q, Yuan Y, Zuo Y, Miao Y, He J, Qiao C, Zheng Z, Zhang T, Xu Y, Wu D, Wang Q, Huang L, Xie Z, Lv H, Wang J, Gong F, Liu Z, Wen C, Zheng H. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis. Int Immunopharmacol 2022; 112:109228. [PMID: 36095947 DOI: 10.1016/j.intimp.2022.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. RA development is mediated by the abnormal activation of multiple signaling pathways. Recent studies have revealed that type-I interferon (IFN-I) signaling plays an essential role in the occurrence and development of RA. However, how to target IFN-I signaling to develop anti-rheumatoid arthritis drugs remains largely unexplored. Here, our study showed that IFN-I signaling was over-activated in articular synovial cells from collagen II-induced arthritis (CIA) mice. Interestingly, we found that a small molecule compound, menthone, strongly inhibited the activation of the IFN-I signaling pathway. Further studies revealed that menthone promoted K48-linked polyubiquitination of Tyk2, thus lowering the protein level and stability of Tyk2. Importantly, menthone administration in the local articulus of CIA mice significantly attenuated the local inflammation in CIA mice. This study could promote our understanding of rheumatoid arthritis, and also suggests a potential strategy to develop anti-RA drugs.
Collapse
Affiliation(s)
- Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinhua Cao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yunshan Yang
- Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tengfei Ren
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
10
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
11
|
Yang T, Cui X, Tang M, Qi W, Zhu Z, Shi M, Yang L, Pei H, Zhang W, Xie L, Xu Y, Yang Z, Chen L. Identification of a Novel 2,8-Diazaspiro[4.5]decan-1-one Derivative as a Potent and Selective Dual TYK2/JAK1 Inhibitor for the Treatment of Inflammatory Bowel Disease. J Med Chem 2022; 65:3151-3172. [PMID: 35113547 DOI: 10.1021/acs.jmedchem.1c01137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we described a series of 2,8-diazaspiro[4.5]decan-1-one derivatives as selective TYK2/JAK1 inhibitors. Systematic exploration of the structure-activity relationship through the introduction of spirocyclic scaffolds based on the reported selective TYK2 inhibitor 14l led to the discovery of the superior derivative compound 48. Compound 48 showed excellent potency on TYK2/JAK1 kinases with IC50 values of 6 and 37 nM, respectively, and exhibited more than 23-fold selectivity for JAK2. Compound 48 also demonstrated excellent metabolic stability and more potent anti-inflammatory efficacy than tofacitinib in acute ulcerative colitis models. Moreover, the excellent anti-inflammatory effect of compound 48 was mediated by regulating the expression of related TYK2/JAK1-regulated genes, as well as the formation of Th1, Th2, and Th17 cells. Taken together, these findings suggest that compound 48 is a selective dual TYK2/JAK inhibitor, deserving to be developed as a clinical candidate.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zejiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wanhua Zhang
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lixin Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaohui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
12
|
Kondratyev NV, Alfimova MV, Golov AK, Golimbet VE. Bench Research Informed by GWAS Results. Cells 2021; 10:3184. [PMID: 34831407 PMCID: PMC8623533 DOI: 10.3390/cells10113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Scientifically interesting as well as practically important phenotypes often belong to the realm of complex traits. To the extent that these traits are hereditary, they are usually 'highly polygenic'. The study of such traits presents a challenge for researchers, as the complex genetic architecture of such traits makes it nearly impossible to utilise many of the usual methods of reverse genetics, which often focus on specific genes. In recent years, thousands of genome-wide association studies (GWAS) were undertaken to explore the relationships between complex traits and a large number of genetic factors, most of which are characterised by tiny effects. In this review, we aim to familiarise 'wet biologists' with approaches for the interpretation of GWAS results, to clarify some issues that may seem counterintuitive and to assess the possibility of using GWAS results in experiments on various complex traits.
Collapse
Affiliation(s)
| | | | - Arkadiy K. Golov
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
| |
Collapse
|
13
|
Li CW, Sachidanandam R, Jayaprakash A, Yi Z, Zhang W, Stefan-Lifshitz M, Concepcion E, Tomer Y. Identification of New Rare Variants Associated With Familial Autoimmune Thyroid Diseases by Deep Sequencing of Linked Loci. J Clin Endocrinol Metab 2021; 106:e4680-e4687. [PMID: 34143178 PMCID: PMC8530708 DOI: 10.1210/clinem/dgab440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic risk factors play a major role in the pathoetiology of autoimmune thyroid diseases (AITD). So far, only common risk variants have been identified in AITD susceptibility genes. Recently, rare genetic variants have emerged as important contributors to complex diseases, and we hypothesized that rare variants play a key role in the genetic susceptibility to AITD. OBJECTIVE We aimed to identify new rare variants that are associated with familial AITD. METHODS We performed deep sequencing of 3 previously mapped AITD-linked loci (10q, 12q, and 14q) in a dataset of 34 families in which AITD clustered (familial AITD). RESULTS We identified 13 rare variants, located in the inositol polyphosphate multikinase (IPMK) gene, that were associated with AITD (ie, both Graves' disease [GD] and Hashimoto's thyroiditis [HT]); 2 rare variants, within the dihydrolipoamide S-succinyltransferase (DLST) and zinc-finger FYVE domain-containing protein (ZFYVE1) genes, that were associated with GD only; and 3 rare variants, within the phosphoglycerate mutase 1 pseudogene 5 (PGAM1P5), LOC105369879, and methionine aminopeptidase 2 (METAP2) genes, that were associated with HT only. CONCLUSION Our study demonstrates that, in addition to common variants, rare variants also contribute to the genetic susceptibility to AITD. We identified new rare variants in 6 AITD susceptibility genes that predispose to familial AITD. Of these, 3 genes, IPMK, ZFYVE1, and METAP2, are mechanistically involved in immune pathways and have been previously shown to be associated with autoimmunity. These genes predispose to thyroid autoimmunity and may serve as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Cheuk Wun Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anitha Jayaprakash
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Erlinda Concepcion
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: Yaron Tomer, MD, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Hromadová D, Elewaut D, Inman RD, Strobl B, Gracey E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front Genet 2021; 12:685280. [PMID: 34290741 PMCID: PMC8287328 DOI: 10.3389/fgene.2021.685280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a family of inflammatory arthritic diseases, which includes the prototypes of psoriatic arthritis and ankylosing spondylitis. SpA is commonly associated with systemic inflammatory diseases, such as psoriasis and inflammatory bowel disease. Immunological studies, murine models and the genetics of SpA all indicate a pathogenic role for the IL-23/IL-17 axis. Therapeutics targeting the IL-23/IL-17 pathway are successful at providing symptomatic relief, but may not provide complete protection against progression of arthritis. Thus there is still tremendous interest in the discovery of novel therapeutic targets for SpA. Tyrosine kinase 2 (TYK2) is a member of the Janus kinases, which mediate intracellular signaling of cytokines via signal transducer and activator of transcription (STAT) activation. TYK2 plays a crucial role in mediating IL-23 receptor signaling and STAT3 activation. A plethora of natural mutations in and around TYK2 have provided a wealth of data to associate this kinase with autoimmune/autoinflammatory diseases in humans. Induced and natural mutations in murine Tyk2 largely support human data; however, key inter-species differences exist, which means extrapolation of data from murine models to humans needs to be done with caution. Despite these reservations, novel selective TYK2 inhibitors are now proving successful in advanced clinical trials of inflammatory diseases. In this review, we will discuss TYK2 from basic biology to therapeutic targeting, with an emphasis on studies in SpA. Seminal studies uncovering the basic science of TYK2 have provided sound foundations for targeting it in SpA and related inflammatory diseases. TYK2 inhibitors may well be the next blockbuster therapeutic for SpA.
Collapse
Affiliation(s)
- Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Robert D. Inman
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Caliskan M, Brown CD, Maranville JC. A catalog of GWAS fine-mapping efforts in autoimmune disease. Am J Hum Genet 2021; 108:549-563. [PMID: 33798443 PMCID: PMC8059376 DOI: 10.1016/j.ajhg.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWASs) have enabled unbiased identification of genetic loci contributing to common complex diseases. Because GWAS loci often harbor many variants and genes, it remains a major challenge to move from GWASs' statistical associations to the identification of causal variants and genes that underlie these association signals. Researchers have applied many statistical and functional fine-mapping strategies to prioritize genetic variants and genes as potential candidates. There is no gold standard in fine-mapping approaches, but consistent results across different approaches can improve confidence in the fine-mapping findings. Here, we combined text mining with a systematic review and formed a catalog of 85 studies with evidence of fine mapping for at least one autoimmune GWAS locus. Across all fine-mapping studies, we compiled 230 GWAS loci with allelic heterogeneity estimates and predictions of causal variants and trait-relevant genes. These 230 loci included 455 combinations of locus-by-disease association signals with 15 autoimmune diseases. Using these estimates, we assessed the probability of mediating disease risk associations across genes in GWAS loci and identified robust signals of causal disease biology. We predict that this comprehensive catalog of GWAS fine-mapping efforts in autoimmune disease will greatly help distill the plethora of information in the field and inform therapeutic strategies.
Collapse
Affiliation(s)
- Minal Caliskan
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA.
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph C Maranville
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA
| |
Collapse
|
16
|
Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex diseases in humans. J Hum Genet 2021; 66:11-23. [PMID: 32948841 PMCID: PMC7728599 DOI: 10.1038/s10038-020-00845-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases. Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants. Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to enhance their contribution to improvements in human health.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Laboratory for Molecular Science for Drug Discovery, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Keijiro Mizukami
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
17
|
Gadina M, Chisolm DA, Philips RL, McInness IB, Changelian PS, O'Shea JJ. Translating JAKs to Jakinibs. THE JOURNAL OF IMMUNOLOGY 2020; 204:2011-2020. [PMID: 32253269 DOI: 10.4049/jimmunol.1901477] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
The discovery of JAKs and STATs and their roles in cytokine and IFN action represented a significant basic advance and a new paradigm in cell signaling. This was quickly followed by discoveries pointing to their essential functions, including identification of JAK3 mutations as a cause of SCID. This and other findings predicted the use of therapeutically targeting JAKs as a new strategy for treating immune and inflammatory diseases. This now is a reality with seven approved jakinibs being used to treat multiple forms of arthritis, inflammatory bowel disease and myeloproliferative neoplasms, and numerous ongoing clinical trials in other settings. This story provides interesting insights into the process of translating basic discoveries and also reveals the need to return to basic work to fill gaps that now become apparent.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle A Chisolm
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rachael L Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Iain B McInness
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; and
| | | | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|